On the closability of differential operators

IF 1.7 2区 数学 Q1 MATHEMATICS
Giovanni Alberti , David Bate , Andrea Marchese
{"title":"On the closability of differential operators","authors":"Giovanni Alberti ,&nbsp;David Bate ,&nbsp;Andrea Marchese","doi":"10.1016/j.jfa.2025.111029","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the closability of directional derivative operators with respect to a general Radon measure <em>μ</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>; our main theorem completely characterizes the vectorfields for which the corresponding operator is closable from the space of Lipschitz functions <span><math><mrow><mi>Lip</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. We also discuss the closability of the same operators from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, and give necessary and sufficient conditions for closability, but we do not have an exact characterization.</div><div>As a corollary we obtain that classical differential operators such as gradient, divergence and Jacobian determinant are closable from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> only if <em>μ</em> is absolutely continuous with respect to the Lebesgue measure.</div><div>We finally consider the closability of a certain class of multilinear differential operators; these results are then rephrased in terms of metric currents.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 111029"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the closability of directional derivative operators with respect to a general Radon measure μ on Rd; our main theorem completely characterizes the vectorfields for which the corresponding operator is closable from the space of Lipschitz functions Lip(Rd) to Lp(μ), for 1p. We also discuss the closability of the same operators from Lq(μ) to Lp(μ), and give necessary and sufficient conditions for closability, but we do not have an exact characterization.
As a corollary we obtain that classical differential operators such as gradient, divergence and Jacobian determinant are closable from Lq(μ) to Lp(μ) only if μ is absolutely continuous with respect to the Lebesgue measure.
We finally consider the closability of a certain class of multilinear differential operators; these results are then rephrased in terms of metric currents.
关于微分算子的可闭性
讨论了方向导数算子对广义Radon测度μ的可闭性;我们的主要定理完整地刻画了对应算子在Lipschitz函数Lip(Rd)到Lp(μ)空间内,当1≤p≤∞时可闭的向量场。我们还讨论了从Lq(μ)到Lp(μ)的相同算子的可闭性,给出了可闭性的充分必要条件,但没有给出确切的刻画。作为推论,我们得到了经典微分算子如梯度算子、散度算子和雅可比行列式算子只有当μ相对于勒贝格测度是绝对连续时才从Lq(μ)到Lp(μ)是可闭的。最后,我们考虑了一类多线性微分算子的可闭性;然后将这些结果重新表述为度量电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信