{"title":"Stability of the area preserving mean curvature flow in asymptotic Schwarzschild space","authors":"Yaoting Gui , Yuqiao Li , Jun Sun","doi":"10.1016/j.jfa.2025.111033","DOIUrl":null,"url":null,"abstract":"<div><div>We first demonstrate that the area preserving mean curvature flow of hypersurfaces in space forms exists for all time and converges exponentially fast to a round sphere if the integral of the traceless second fundamental form is sufficiently small. Then we show that from sufficiently large initial coordinate sphere, the area preserving mean curvature flow exists for all time and converges exponentially fast to a constant mean curvature surface in 3-dimensional asymptotically Schwarzschild spaces. This provides a new approach to the existence of foliation established by Huisken and Yau (<span><span>[11]</span></span>). And also a uniqueness result follows.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 111033"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002150","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We first demonstrate that the area preserving mean curvature flow of hypersurfaces in space forms exists for all time and converges exponentially fast to a round sphere if the integral of the traceless second fundamental form is sufficiently small. Then we show that from sufficiently large initial coordinate sphere, the area preserving mean curvature flow exists for all time and converges exponentially fast to a constant mean curvature surface in 3-dimensional asymptotically Schwarzschild spaces. This provides a new approach to the existence of foliation established by Huisken and Yau ([11]). And also a uniqueness result follows.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis