Rebar grasp detection using a synthetic model generator and domain randomization

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Tao Sun , Beining Han , Szymon Rusinkiewicz , Yi Shao
{"title":"Rebar grasp detection using a synthetic model generator and domain randomization","authors":"Tao Sun ,&nbsp;Beining Han ,&nbsp;Szymon Rusinkiewicz ,&nbsp;Yi Shao","doi":"10.1016/j.autcon.2025.106252","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for automated rebar cage assembly in the construction industry highlights the need for flexible rebar grasping solutions. This paper proposes a grasp detection method that enables robotic arms to autonomously grasp rebars from the top layer of stacks, eliminating the need for complex delivery systems. To support this, a synthetic dataset pipeline incorporating domain randomization is developed, which facilitates robust rebar instance segmentation without the need for labor-intensive real-world data collection. Within this pipeline, a fully-parameterized rebar generator is proposed to eliminate the reliance on manual modeling in data generation, allowing an infinite generation of rebar datasets with realistic and diverse appearances and shapes. Real-world experiments demonstrated a segmentation accuracy of 87.9 for rebars in the top layer and a 91.6 % grasping success rate on the first attempt, validating the proposed methods. Additionally, an ablation study highlighted the significance of rebar stacking, lighting, and camera pose variations in improving the model performance in real-world scenarios.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"176 ","pages":"Article 106252"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525002924","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for automated rebar cage assembly in the construction industry highlights the need for flexible rebar grasping solutions. This paper proposes a grasp detection method that enables robotic arms to autonomously grasp rebars from the top layer of stacks, eliminating the need for complex delivery systems. To support this, a synthetic dataset pipeline incorporating domain randomization is developed, which facilitates robust rebar instance segmentation without the need for labor-intensive real-world data collection. Within this pipeline, a fully-parameterized rebar generator is proposed to eliminate the reliance on manual modeling in data generation, allowing an infinite generation of rebar datasets with realistic and diverse appearances and shapes. Real-world experiments demonstrated a segmentation accuracy of 87.9 for rebars in the top layer and a 91.6 % grasping success rate on the first attempt, validating the proposed methods. Additionally, an ablation study highlighted the significance of rebar stacking, lighting, and camera pose variations in improving the model performance in real-world scenarios.
利用综合模型生成器和领域随机化技术进行钢筋抓握检测
建筑行业对自动化钢筋笼组装的需求日益增长,这凸显了对灵活的钢筋抓取解决方案的需求。本文提出了一种抓握检测方法,使机械臂能够自主地从栈顶层抓取钢筋,从而消除了对复杂递送系统的需要。为了支持这一点,我们开发了一个包含领域随机化的合成数据集管道,它可以在不需要劳动密集型的实际数据收集的情况下实现强大的钢筋实例分割。在这个管道中,提出了一个全参数化的螺纹钢生成器,以消除对数据生成中手动建模的依赖,允许无限生成具有逼真和多样化外观和形状的螺纹钢数据集。实际实验表明,对顶层钢筋的分割精度为87.9,第一次抓取成功率为91.6%,验证了所提出的方法。此外,一项烧蚀研究强调了钢筋堆叠、照明和相机姿态变化对提高模型在现实场景中的性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信