Neeraj Kumar Sharma , Sriramulu Bojjagani , Ravi Uyyala , Anup Kumar Maurya , Saru Kumari
{"title":"Deep learning BiLSTM and Branch-and-Bound based multi-objective virtual machine allocation and migration with profit, energy, and SLA constraints","authors":"Neeraj Kumar Sharma , Sriramulu Bojjagani , Ravi Uyyala , Anup Kumar Maurya , Saru Kumari","doi":"10.1016/j.suscom.2025.101128","DOIUrl":null,"url":null,"abstract":"<div><div>This paper highlights a novel approach to address multiple networking-based VM allocation and migration objectives at the cloud data center. The proposed approach in this paper is structured into three distinct phases: firstly, we employ a Bi-Directional Long Short Term Memory (BiLSTM) model to predict Virtual Machines (VMs) instance’s prices. Subsequently, we formulate the problem of allocating VMs to Physical Machines (PMs) and switches in a network-aware cloud data center environment as a multi-objective optimization task, employing Linear Programming (LP) techniques. For optimal allocation of VMs, we leverage the Branch-and-Bound (BaB) technique. In the third phase, we implement a VM migration strategy sensitive to SLA requirements and energy consumption considerations. The results, conducted using the CloudSim simulator, demonstrate the efficacy of our approach, showcasing a substantial 35% reduction in energy consumption, a remarkable decrease in SLA violations, and a notable 18% increase in the cloud data center’s profit. Finally, the proposed multi-objective approach reduces energy consumption and SLA violation and makes the data center sustainable.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101128"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000484","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper highlights a novel approach to address multiple networking-based VM allocation and migration objectives at the cloud data center. The proposed approach in this paper is structured into three distinct phases: firstly, we employ a Bi-Directional Long Short Term Memory (BiLSTM) model to predict Virtual Machines (VMs) instance’s prices. Subsequently, we formulate the problem of allocating VMs to Physical Machines (PMs) and switches in a network-aware cloud data center environment as a multi-objective optimization task, employing Linear Programming (LP) techniques. For optimal allocation of VMs, we leverage the Branch-and-Bound (BaB) technique. In the third phase, we implement a VM migration strategy sensitive to SLA requirements and energy consumption considerations. The results, conducted using the CloudSim simulator, demonstrate the efficacy of our approach, showcasing a substantial 35% reduction in energy consumption, a remarkable decrease in SLA violations, and a notable 18% increase in the cloud data center’s profit. Finally, the proposed multi-objective approach reduces energy consumption and SLA violation and makes the data center sustainable.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.