On the computational complexity of ordinal multi-objective unconstrained combinatorial optimization

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
José Rui Figueira , Kathrin Klamroth , Michael Stiglmayr , Julia Sudhoff Santos
{"title":"On the computational complexity of ordinal multi-objective unconstrained combinatorial optimization","authors":"José Rui Figueira ,&nbsp;Kathrin Klamroth ,&nbsp;Michael Stiglmayr ,&nbsp;Julia Sudhoff Santos","doi":"10.1016/j.orl.2025.107302","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-objective unconstrained combinatorial optimization problems (MUCO) are in general hard to solve, i.e., the corresponding decision problem is NP-hard and the outcome set is intractable. In this paper we explore special cases of MUCO problems that are actually easy, i.e., solvable in polynomial time. More precisely, we show that MUCO problems with up to two ordinal objective functions plus one real-valued objective function are tractable, and that their complete nondominated set can be computed in polynomial time. For MUCO problems with one ordinal and a second ordinal or real-valued objective function we present an even more efficient algorithm that applies a greedy strategy multiple times.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"61 ","pages":"Article 107302"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763772500063X","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-objective unconstrained combinatorial optimization problems (MUCO) are in general hard to solve, i.e., the corresponding decision problem is NP-hard and the outcome set is intractable. In this paper we explore special cases of MUCO problems that are actually easy, i.e., solvable in polynomial time. More precisely, we show that MUCO problems with up to two ordinal objective functions plus one real-valued objective function are tractable, and that their complete nondominated set can be computed in polynomial time. For MUCO problems with one ordinal and a second ordinal or real-valued objective function we present an even more efficient algorithm that applies a greedy strategy multiple times.
有序多目标无约束组合优化的计算复杂度
多目标无约束组合优化问题(MUCO)一般是难以解决的问题,即相应的决策问题是np困难的,结果集是难以处理的。在本文中,我们探讨了MUCO问题的特殊情况,这些问题实际上很容易,即在多项式时间内可解。更精确地说,我们证明了包含两个有序目标函数和一个实值目标函数的MUCO问题是可处理的,并且它们的完全非支配集可以在多项式时间内计算出来。对于具有一个序数和一个二阶序数或实值目标函数的MUCO问题,我们提出了一种更有效的算法,该算法多次应用贪婪策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信