Anirudh Thatipelli , Shao-Yuan Lo , Amit K. Roy-Chowdhury
{"title":"Egocentric and exocentric methods: A short survey","authors":"Anirudh Thatipelli , Shao-Yuan Lo , Amit K. Roy-Chowdhury","doi":"10.1016/j.cviu.2025.104371","DOIUrl":null,"url":null,"abstract":"<div><div>Egocentric vision captures the scene from the point of view of the camera wearer while exocentric vision captures the overall scene context. Jointly modeling ego and exo views is crucial to developing next-generation AI agents. The community has regained interest in the field of egocentric vision. While the third-person view and first-person have been thoroughly investigated, very few works aim to study both synchronously. Exocentric videos contain many relevant signals that are transferrable to egocentric videos. This paper provides a timely overview of works combining egocentric and exocentric visions, a very new but promising research topic. We describe in detail the datasets and present a survey of the key applications of ego-exo joint learning, where we identify the most recent advances. With the presentation of the current status of the progress, we believe this short but timely survey will be valuable to the broad video-understanding community, particularly when multi-view modeling is critical.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"257 ","pages":"Article 104371"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000943","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Egocentric vision captures the scene from the point of view of the camera wearer while exocentric vision captures the overall scene context. Jointly modeling ego and exo views is crucial to developing next-generation AI agents. The community has regained interest in the field of egocentric vision. While the third-person view and first-person have been thoroughly investigated, very few works aim to study both synchronously. Exocentric videos contain many relevant signals that are transferrable to egocentric videos. This paper provides a timely overview of works combining egocentric and exocentric visions, a very new but promising research topic. We describe in detail the datasets and present a survey of the key applications of ego-exo joint learning, where we identify the most recent advances. With the presentation of the current status of the progress, we believe this short but timely survey will be valuable to the broad video-understanding community, particularly when multi-view modeling is critical.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems