Stella Sten , Joakim Odqvist , Susanne M. Norgren , Peter Hedström
{"title":"Functional-gradient WC-TiC cemented carbides with alternative binders (Ni and Fe)","authors":"Stella Sten , Joakim Odqvist , Susanne M. Norgren , Peter Hedström","doi":"10.1016/j.ijrmhm.2025.107214","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we investigate the development of functionally graded cemented carbides, featuring macro gradients on the millimeter scale, where Fe, or Ni is the binder phase. Two composites, WC-Ni and WC-Fe with 20 % binder by volume were produced by addition of TiC on the surface of the samples before sintering at 1475 °C for 1 h. The sintered samples were analyzed using electron microscopy and microanalysis.</div><div>For the Ni-binder sample, the results show a clear WC grain size gradient, with the smallest average grain size close to the TiC layer. This sample also exhibits compositional gradients, where Ni increases while Ti and C decrease from the added TiC layer and outward. The same effect of TiC addition on WC grain growth is observed in the Fe-binder sample, however, the effect is much smaller.</div><div>The addition of Ti is known to influence the morphology of WC grains in Co-binder systems, and this effect is observed here in both Ni- and Fe-binder samples. WC growth ledges areobserved on the WC facets near the applied TiC layer where Ti levels in the binder are high. This suggests that the WC grain growth inhibition mechanism imposed by Ti is similar in these alternative binders as what has previously been reported for conventional Co-binders.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"131 ","pages":"Article 107214"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001799","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we investigate the development of functionally graded cemented carbides, featuring macro gradients on the millimeter scale, where Fe, or Ni is the binder phase. Two composites, WC-Ni and WC-Fe with 20 % binder by volume were produced by addition of TiC on the surface of the samples before sintering at 1475 °C for 1 h. The sintered samples were analyzed using electron microscopy and microanalysis.
For the Ni-binder sample, the results show a clear WC grain size gradient, with the smallest average grain size close to the TiC layer. This sample also exhibits compositional gradients, where Ni increases while Ti and C decrease from the added TiC layer and outward. The same effect of TiC addition on WC grain growth is observed in the Fe-binder sample, however, the effect is much smaller.
The addition of Ti is known to influence the morphology of WC grains in Co-binder systems, and this effect is observed here in both Ni- and Fe-binder samples. WC growth ledges areobserved on the WC facets near the applied TiC layer where Ti levels in the binder are high. This suggests that the WC grain growth inhibition mechanism imposed by Ti is similar in these alternative binders as what has previously been reported for conventional Co-binders.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.