Effect of gadolinium doping on the structural, morphological, vibrational, and optical properties of β−Ga2O3: A solid-state combustion approach

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Abhishek Sharma, Vir Singh Rangra
{"title":"Effect of gadolinium doping on the structural, morphological, vibrational, and optical properties of β−Ga2O3: A solid-state combustion approach","authors":"Abhishek Sharma,&nbsp;Vir Singh Rangra","doi":"10.1016/j.ceramint.2025.01.532","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the synthesis and comprehensive characterization of gadolinium (Gd)-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> nanoparticles, prepared for the first time via the solid-state combustion method, with Gd doping concentrations of 1%, 2%, and 3%. To date, no prior studies have reported the successful synthesis of Gd-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> using this method. X-ray diffraction (XRD) analysis confirmed the retention of the monoclinic crystal structure, with <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ion incorporation leading to peak broadening, reduced intensity, and shifts to higher <span><math><mrow><mn>2</mn><mi>θ</mi></mrow></math></span> angles. These changes, validated through Scherrer and Williamson–Hall analyses, are attributed to lattice strain, reduced crystallite size, and structural distortion induced by substituting smaller <span><math><msup><mrow><mi>Ga</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>62</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>) with larger <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>93</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>). Morphological analysis using field emission scanning electron microscopy (FESEM) revealed polydispersed nanoparticles with irregular shapes and a decrease in particle size with increasing Gd concentration. Energy-dispersive spectroscopy (EDS) confirmed the stoichiometric incorporation of Gd ions into the <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> lattice. Raman and Fourier-transform infrared (FTIR) spectroscopy showed reduced intensities, peak broadening, and shifts to higher wavenumbers, indicating increased lattice distortion and strain. UV–Vis spectroscopy demonstrated a reduction in the optical bandgap from 4.6 eV for pure <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> to 4.11 eV for 1% Gd doping, with minor increases to 4.16 eV and 4.18 eV at 2% and 3% doping, respectively. This narrowing of the bandgap is attributed to the introduction of defect states within the bandgap, facilitating electronic transitions at lower energies. Photoluminescence (PL) spectra revealed broad emission bands in the 400-600 nm range, with deconvolution identifying prominent peaks in the blue and green regions, corresponding to radiative recombination involving defect states such as oxygen vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>)</mo></mrow></math></span> and gallium vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi><mi>a</mi></mrow></msub><mo>)</mo></mrow></math></span>. This work highlights the influence of Gd doping on the structural and optical properties of <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and establishes its potential for ultraviolet photodetectors, luminescent devices, and other optoelectronic applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 13","pages":"Pages 17583-17592"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225005905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the synthesis and comprehensive characterization of gadolinium (Gd)-doped βGa2O3 nanoparticles, prepared for the first time via the solid-state combustion method, with Gd doping concentrations of 1%, 2%, and 3%. To date, no prior studies have reported the successful synthesis of Gd-doped βGa2O3 using this method. X-ray diffraction (XRD) analysis confirmed the retention of the monoclinic crystal structure, with Gd3+ ion incorporation leading to peak broadening, reduced intensity, and shifts to higher 2θ angles. These changes, validated through Scherrer and Williamson–Hall analyses, are attributed to lattice strain, reduced crystallite size, and structural distortion induced by substituting smaller Ga3+ ions (0.62Å) with larger Gd3+ ions (0.93Å). Morphological analysis using field emission scanning electron microscopy (FESEM) revealed polydispersed nanoparticles with irregular shapes and a decrease in particle size with increasing Gd concentration. Energy-dispersive spectroscopy (EDS) confirmed the stoichiometric incorporation of Gd ions into the βGa2O3 lattice. Raman and Fourier-transform infrared (FTIR) spectroscopy showed reduced intensities, peak broadening, and shifts to higher wavenumbers, indicating increased lattice distortion and strain. UV–Vis spectroscopy demonstrated a reduction in the optical bandgap from 4.6 eV for pure βGa2O3 to 4.11 eV for 1% Gd doping, with minor increases to 4.16 eV and 4.18 eV at 2% and 3% doping, respectively. This narrowing of the bandgap is attributed to the introduction of defect states within the bandgap, facilitating electronic transitions at lower energies. Photoluminescence (PL) spectra revealed broad emission bands in the 400-600 nm range, with deconvolution identifying prominent peaks in the blue and green regions, corresponding to radiative recombination involving defect states such as oxygen vacancies (Vo) and gallium vacancies (VGa). This work highlights the influence of Gd doping on the structural and optical properties of βGa2O3 and establishes its potential for ultraviolet photodetectors, luminescent devices, and other optoelectronic applications.
钆掺杂对β−Ga2O3结构、形貌、振动和光学性质的影响:固态燃烧方法
本研究首次采用固体燃烧法制备了Gd掺杂浓度分别为1%、2%和3%的β - Ga2O3纳米颗粒,并对其进行了合成和综合表征。到目前为止,还没有研究报道使用这种方法成功合成了掺杂gd的β−Ga2O3。x射线衍射(XRD)分析证实了单斜晶结构的保留,Gd3+离子的掺入导致峰展宽,强度降低,并向更高的2θ角偏移。通过Scherrer和Williamson-Hall分析证实,这些变化归因于晶格应变、晶体尺寸减小以及用较大的Gd3+离子(0.93Å)取代较小的Ga3+离子(0.62Å)引起的结构畸变。利用场发射扫描电镜(FESEM)对纳米颗粒进行形貌分析,发现纳米颗粒呈不规则形状,且随着Gd浓度的增加,颗粒大小逐渐减小。能谱分析(EDS)证实了Gd离子在β - Ga2O3晶格中的化学计量结合。拉曼和傅里叶变换红外光谱(FTIR)显示强度降低,峰展宽,并向更高的波数偏移,表明晶格畸变和应变增加。紫外可见光谱显示,纯β−Ga2O3的光学带隙从4.6 eV减小到1% Gd掺杂时的4.11 eV,在2%和3%掺杂时分别增加到4.16 eV和4.18 eV。这种带隙的缩小是由于在带隙内引入了缺陷态,促进了低能量的电子跃迁。光致发光(PL)光谱在400-600 nm范围内显示出较宽的发射带,反褶积识别出蓝色和绿色区域的突出峰,对应于涉及氧空位(Vo)和镓空位(VGa)等缺陷态的辐射复合。这项工作强调了Gd掺杂对β−Ga2O3结构和光学性质的影响,并确立了其在紫外光电探测器、发光器件和其他光电应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信