Structure and coloring of (P7, C5, diamond)-free graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Ran Chen, Baogang Xu
{"title":"Structure and coloring of (P7, C5, diamond)-free graphs","authors":"Ran Chen,&nbsp;Baogang Xu","doi":"10.1016/j.dam.2025.04.059","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote a path and a cycle on <span><math><mi>t</mi></math></span> vertices, respectively. A <em>diamond</em> consists of two triangles sharing exactly one edge, a <em>paw</em> is a graph obtained from a triangle by adding a pendant edge. Let <span><math><mi>H</mi></math></span> be a diamond or a paw. In this paper, we determine the structure of imperfect (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graphs. As a consequence, we show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graph <span><math><mi>G</mi></math></span> can be polynomially colored with <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> colors. We also show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free graph is perfectly divisible, where a <em>bull</em> is a graph consisting of a triangle with two disjoint pendant edges. As a consequence, <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span> if <span><math><mi>G</mi></math></span> is (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 298-307"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002379","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let Pt and Ct denote a path and a cycle on t vertices, respectively. A diamond consists of two triangles sharing exactly one edge, a paw is a graph obtained from a triangle by adding a pendant edge. Let H be a diamond or a paw. In this paper, we determine the structure of imperfect (P7,C5,H)-free graphs. As a consequence, we show that each (P7,C5,H)-free graph G can be polynomially colored with max{3,ω(G)} colors. We also show that each (P7,C5, bull)-free graph is perfectly divisible, where a bull is a graph consisting of a triangle with two disjoint pendant edges. As a consequence, χ(G)ω(G)+12 if G is (P7,C5, bull)-free.
(P7, C5,菱形)自由图的结构与着色
设Pt和Ct分别表示t个顶点上的路径和循环。菱形由两个恰好共用一条边的三角形组成,爪形是由三角形加上一条垂边得到的图形。让H成为钻石或爪子。本文确定了不完全(P7,C5,H)自由图的结构。因此,我们证明了每个(P7,C5,H)自由图G可以多项式地用max{3,ω(G)}颜色着色。我们还证明了每个(P7,C5,牛)自由图是完全可分的,其中牛是一个由两个不相交的垂边组成的三角形图。因此,如果G不存在(P7,C5,公牛),则χ(G)≤ω(G)+12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信