Preparation and performance of regenerated cellulose/polylactic acid non-leaching antibacterial composite membrane

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hongbo Wang , Jinhong Xue , Junming Liang , Xianpei Xu , Limin You , Yaxin An , Fu Li , Pengfei Fei , Shuqiang Liu , Mei Liu , Fulai Zhao
{"title":"Preparation and performance of regenerated cellulose/polylactic acid non-leaching antibacterial composite membrane","authors":"Hongbo Wang ,&nbsp;Jinhong Xue ,&nbsp;Junming Liang ,&nbsp;Xianpei Xu ,&nbsp;Limin You ,&nbsp;Yaxin An ,&nbsp;Fu Li ,&nbsp;Pengfei Fei ,&nbsp;Shuqiang Liu ,&nbsp;Mei Liu ,&nbsp;Fulai Zhao","doi":"10.1016/j.ijbiomac.2025.143960","DOIUrl":null,"url":null,"abstract":"<div><div>Composite membranes with excellent antibacterial properties, hydrophilic/hydrophobic differentiation, and selective permeability are preferred materials for wound dressings. In this work, antibacterial bromoacetyl and quaternary ammonium groups were chemically introduced into a regenerated cellulose nanofiber membrane. This hydrophilic membrane was then compounded with a polylactic acid (PLA) liquid film through a non-solvent-induced phase separation process to prepare a composite membrane. FTIR, XPS, and EDS results confirmed the successful chemical modification and presence of antibacterial groups. SEM analysis revealed a stable composite with an asymmetric structure. Modification time, particularly the bromoacetylation duration, had a certain impact on the structure and properties of the composite membrane. The optimized composite membrane exhibited excellent gas permeability (air and water vapor) and differentiated hydrophilic/hydrophobic properties. Membrane modified via bromoacetylation for over 3 h demonstrated &gt;95 % antibacterial efficiency against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, indicating broad-spectrum efficacy. The biomass-derived polymer matrix, scalable production process, and multifunctionality highlight its potential for healthcare applications, particularly in wound dressings.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"311 ","pages":"Article 143960"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014181302504512X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite membranes with excellent antibacterial properties, hydrophilic/hydrophobic differentiation, and selective permeability are preferred materials for wound dressings. In this work, antibacterial bromoacetyl and quaternary ammonium groups were chemically introduced into a regenerated cellulose nanofiber membrane. This hydrophilic membrane was then compounded with a polylactic acid (PLA) liquid film through a non-solvent-induced phase separation process to prepare a composite membrane. FTIR, XPS, and EDS results confirmed the successful chemical modification and presence of antibacterial groups. SEM analysis revealed a stable composite with an asymmetric structure. Modification time, particularly the bromoacetylation duration, had a certain impact on the structure and properties of the composite membrane. The optimized composite membrane exhibited excellent gas permeability (air and water vapor) and differentiated hydrophilic/hydrophobic properties. Membrane modified via bromoacetylation for over 3 h demonstrated >95 % antibacterial efficiency against Escherichia coli and Staphylococcus aureus, indicating broad-spectrum efficacy. The biomass-derived polymer matrix, scalable production process, and multifunctionality highlight its potential for healthcare applications, particularly in wound dressings.
再生纤维素/聚乳酸非浸出抗菌复合膜的制备及性能研究
复合膜具有优异的抗菌性能、亲疏水分化和选择性通透性,是创面敷料的首选材料。在这项工作中,抗菌溴乙酰基和季铵基团被化学引入到再生纤维素纳米纤维膜中。然后通过非溶剂诱导相分离工艺将该亲水性膜与聚乳酸(PLA)液体膜复合,制备复合膜。FTIR, XPS和EDS结果证实了化学修饰的成功和抗菌基团的存在。SEM分析显示复合材料结构稳定,具有不对称结构。改性时间,特别是溴乙酰化时间对复合膜的结构和性能有一定的影响。优化后的复合膜具有优异的透气性(空气和水蒸气)和不同的亲疏水性。经溴乙酰化修饰3小时以上的膜对大肠杆菌和金黄色葡萄球菌的抗菌效率为95%,具有广谱效果。生物质衍生的聚合物基质、可扩展的生产工艺和多功能突出了其在医疗保健应用方面的潜力,特别是在伤口敷料方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信