Julianna Varjopuro , Aleksi Kamppinen , Aapo Poskela , Juha A. Karhu , Anders V. Lindfors , Kati Miettunen
{"title":"Computational simulation of perovskite and silicon solar panel operating temperatures in varying ambient conditions","authors":"Julianna Varjopuro , Aleksi Kamppinen , Aapo Poskela , Juha A. Karhu , Anders V. Lindfors , Kati Miettunen","doi":"10.1016/j.solmat.2025.113657","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the thermal behavior of perovskite panels is modeled in different ambient conditions, and simulated operation temperatures are compared with those of more commonly studied silicon solar panels. One specific need is for temperature model parameters for perovskite panels, to make, for instance, photovoltaic power prediction models that are more consistent with those of silicon solar panels. While the operating temperature of perovskite panels has gained less attention, it impacts their stability more compared with silicon devices. The applied 3D model allows studying the effects of varying ambient conditions on the heat distribution and temperature of commercial-sized panels. The results show that replacing the standard crystalline silicon with a typical perovskite absorber of ca. <span><math><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mspace></mspace><mi>eV</mi></mrow></math></span> band gap as the active material may significantly reduce the module temperature in normal operation: the modeled average cell temperature of the perovskite module was ca. <span><math><mrow><mn>7</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span> less than that of the silicon module under reference conditions (ambient temperature <span><math><mrow><mn>20</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span>, wind speed <span><math><mrow><mn>1</mn><mspace></mspace><mi>m/s</mi></mrow></math></span>, and solar irradiance <span><math><mrow><mn>800</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>). The novelty of the study is the predicted set of perovskite-module-specific model parameters for the Sandia (<span><math><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mn>3</mn><mo>.</mo><mn>77</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>129</mn></mrow></math></span>), Faiman (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L0</mi></mrow></msub><mo>=</mo><mn>37</mn><mo>.</mo><mn>93</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L1</mi></mrow></msub><mo>=</mo><mn>10</mn><mo>.</mo><mn>47</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), PVsyst (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>19</mn><mo>.</mo><mn>29</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>5</mn><mo>.</mo><mn>27</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), Mattei (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>PV</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>49</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>65</mn></mrow></math></span>, <span><math><mi>v</mi></math></span> is the wind speed), and TRNSYS (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>Loss</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>54</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>38</mn></mrow></math></span>) models that were determined by fitting these models to the simulated temperature data in the varying ambient conditions. These parameters enable estimation of perovskite panel temperature in varying outdoor conditions with existing PV system models.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113657"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002582","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the thermal behavior of perovskite panels is modeled in different ambient conditions, and simulated operation temperatures are compared with those of more commonly studied silicon solar panels. One specific need is for temperature model parameters for perovskite panels, to make, for instance, photovoltaic power prediction models that are more consistent with those of silicon solar panels. While the operating temperature of perovskite panels has gained less attention, it impacts their stability more compared with silicon devices. The applied 3D model allows studying the effects of varying ambient conditions on the heat distribution and temperature of commercial-sized panels. The results show that replacing the standard crystalline silicon with a typical perovskite absorber of ca. band gap as the active material may significantly reduce the module temperature in normal operation: the modeled average cell temperature of the perovskite module was ca. less than that of the silicon module under reference conditions (ambient temperature , wind speed , and solar irradiance ). The novelty of the study is the predicted set of perovskite-module-specific model parameters for the Sandia (, ), Faiman (, ), PVsyst (, ), Mattei (, is the wind speed), and TRNSYS () models that were determined by fitting these models to the simulated temperature data in the varying ambient conditions. These parameters enable estimation of perovskite panel temperature in varying outdoor conditions with existing PV system models.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.