Varieties of MV-monoids and positive MV-algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Marco Abbadini , Paolo Aglianò , Stefano Fioravanti
{"title":"Varieties of MV-monoids and positive MV-algebras","authors":"Marco Abbadini ,&nbsp;Paolo Aglianò ,&nbsp;Stefano Fioravanti","doi":"10.1016/j.jalgebra.2025.04.027","DOIUrl":null,"url":null,"abstract":"<div><div>MV-monoids are algebras <span><math><mo>〈</mo><mi>A</mi><mo>,</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>⊕</mo><mo>,</mo><mo>⊙</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>〉</mo></math></span> where <span><math><mo>〈</mo><mi>A</mi><mo>,</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>〉</mo></math></span> is a bounded distributive lattice, both <span><math><mo>〈</mo><mi>A</mi><mo>,</mo><mo>⊕</mo><mo>,</mo><mn>0</mn><mo>〉</mo></math></span> and <span><math><mo>〈</mo><mi>A</mi><mo>,</mo><mo>⊙</mo><mo>,</mo><mn>1</mn><mo>〉</mo></math></span> are commutative monoids, and some further connecting axioms are satisfied. Every MV-algebra in the signature <span><math><mo>{</mo><mo>⊕</mo><mo>,</mo><mo>¬</mo><mo>,</mo><mn>0</mn><mo>}</mo></math></span> is term equivalent to an algebra that has an MV-monoid as a reduct, by defining, as standard, <span><math><mn>1</mn><mo>≔</mo><mo>¬</mo><mn>0</mn></math></span>, <span><math><mi>x</mi><mo>⊙</mo><mi>y</mi><mo>≔</mo><mo>¬</mo><mo>(</mo><mo>¬</mo><mi>x</mi><mo>⊕</mo><mo>¬</mo><mi>y</mi><mo>)</mo></math></span>, <span><math><mi>x</mi><mo>∨</mo><mi>y</mi><mo>≔</mo><mo>(</mo><mi>x</mi><mo>⊙</mo><mo>¬</mo><mi>y</mi><mo>)</mo><mo>⊕</mo><mi>y</mi></math></span> and <span><math><mi>x</mi><mo>∧</mo><mi>y</mi><mo>≔</mo><mo>¬</mo><mo>(</mo><mo>¬</mo><mi>x</mi><mo>∨</mo><mo>¬</mo><mi>y</mi><mo>)</mo></math></span>. Particular examples of MV-monoids are positive MV-algebras, i.e., the <span><math><mo>{</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>⊕</mo><mo>,</mo><mo>⊙</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-subreducts of MV-algebras. Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent quasivariety semantics of any logic.</div><div>In this paper, we study the lattices of subvarieties of MV-monoids and of positive MV-algebras. In particular, we characterize and axiomatize all almost minimal varieties of MV-monoids, we characterize the finite subdirectly irreducible positive MV-algebras, and we characterize and axiomatize all varieties of positive MV-algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"677 ","pages":"Pages 690-744"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002492","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

MV-monoids are algebras A,,,,,0,1 where A,,,0,1 is a bounded distributive lattice, both A,,0 and A,,1 are commutative monoids, and some further connecting axioms are satisfied. Every MV-algebra in the signature {,¬,0} is term equivalent to an algebra that has an MV-monoid as a reduct, by defining, as standard, 1¬0, xy¬(¬x¬y), xy(x¬y)y and xy¬(¬x¬y). Particular examples of MV-monoids are positive MV-algebras, i.e., the {,,,,0,1}-subreducts of MV-algebras. Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent quasivariety semantics of any logic.
In this paper, we study the lattices of subvarieties of MV-monoids and of positive MV-algebras. In particular, we characterize and axiomatize all almost minimal varieties of MV-monoids, we characterize the finite subdirectly irreducible positive MV-algebras, and we characterize and axiomatize all varieties of positive MV-algebras.
mv -单群和正mv -代数的变种
v -模群是代数< A,∨,∧,⊕,⊙,0,1 >,其中< A,∨,∧,0,1 >是一个有界分配格,< A,⊕,0 >和< A,⊙,1 >都是交换模群,并进一步满足一些连接公理。在签名{⊕,¬,0}中,每一个v -代数都等价于一个具有v -单形约简的代数,条件是:1是0,x≠y是(x≠y), x≠y是(x≠y), x≠y是(x≠y)。mv -模群的特殊例子是正mv -代数,即mv -代数的{∨,∧,⊕,⊙,0,1}-子约。正的mv -代数在某种意义上形成了一种奇特的拟变,尽管它有逻辑动机(作为mv -代数的子约的拟变),但它不是任何逻辑的等价拟变语义。本文研究了mv -模群和正mv -代数的子变种格。特别地,我们刻画了所有mv -单群的几乎极小变体,并公理化了它们,刻画了有限次直接不可约的正mv -代数,刻画了所有正mv -代数的变体并公理化了它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信