Individual and combined effects of cold plasma and enzymatic hydrolysis modification on soluble dietary fiber in wheat bran: Structural, physicochemical and functional properties
{"title":"Individual and combined effects of cold plasma and enzymatic hydrolysis modification on soluble dietary fiber in wheat bran: Structural, physicochemical and functional properties","authors":"Xiaoning Li , Qian Xu , Bin Tan , Liping Wang","doi":"10.1016/j.jcs.2025.104196","DOIUrl":null,"url":null,"abstract":"<div><div>The individual and combined effects of cold plasma and enzymatic hydrolysis modification on the yield, structural, physicochemical and functional properties of soluble dietary fiber (SDF) derived from wheat bran were investigated. The results indicated that enzymatic hydrolysis and combined modification (cold plasma followed by enzymatic hydrolysis) significantly enhanced the yield of SDF to 15.08 % and 14.65 %, respectively. In terms of structure, all three modifications resulted in partial cleavage of glycosidic and hydrogen bonds, leading to the reduction in the molecular weights of SDFs. The cold plasma-modified SDF displayed a loose lamellar microstructure with small pores, while honeycomb-like pores were observed on the surface of SDF modified by two others. The combined-modified SDF exhibited the most significant structural alterations, which resulted in its lowest viscosity and highest water solubility in all tested SDF. Furthermore, the cold plasma-modified SDF demonstrated the highest α-amylase inhibition ability and bile salt adsorption capacity; while the combined-modified SDF showed the best performance in glucose adsorption capacity, cholesterol adsorption capacity and antioxidant capacity. In conclusion, the combination of cold plasma and enzymatic hydrolysis is a promising strategy for improving not only the yield but also the physicochemical and functional properties of SDF in wheat bran.</div></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"123 ","pages":"Article 104196"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0733521025000955","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The individual and combined effects of cold plasma and enzymatic hydrolysis modification on the yield, structural, physicochemical and functional properties of soluble dietary fiber (SDF) derived from wheat bran were investigated. The results indicated that enzymatic hydrolysis and combined modification (cold plasma followed by enzymatic hydrolysis) significantly enhanced the yield of SDF to 15.08 % and 14.65 %, respectively. In terms of structure, all three modifications resulted in partial cleavage of glycosidic and hydrogen bonds, leading to the reduction in the molecular weights of SDFs. The cold plasma-modified SDF displayed a loose lamellar microstructure with small pores, while honeycomb-like pores were observed on the surface of SDF modified by two others. The combined-modified SDF exhibited the most significant structural alterations, which resulted in its lowest viscosity and highest water solubility in all tested SDF. Furthermore, the cold plasma-modified SDF demonstrated the highest α-amylase inhibition ability and bile salt adsorption capacity; while the combined-modified SDF showed the best performance in glucose adsorption capacity, cholesterol adsorption capacity and antioxidant capacity. In conclusion, the combination of cold plasma and enzymatic hydrolysis is a promising strategy for improving not only the yield but also the physicochemical and functional properties of SDF in wheat bran.
期刊介绍:
The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.