JGC-IAGCL: Fusing joint graph convolution and intent-aware graph contrastive learning for explainable recommendation

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhi Yang , Chuan Lin , Yongbin Qin , Ruizhang Huang , Yanping Chen , Jiwei Qin
{"title":"JGC-IAGCL: Fusing joint graph convolution and intent-aware graph contrastive learning for explainable recommendation","authors":"Zhi Yang ,&nbsp;Chuan Lin ,&nbsp;Yongbin Qin ,&nbsp;Ruizhang Huang ,&nbsp;Yanping Chen ,&nbsp;Jiwei Qin","doi":"10.1016/j.inffus.2025.103258","DOIUrl":null,"url":null,"abstract":"<div><div>Graph contrastive learning (GCL) enhances recommendation accuracy by leveraging self-supervised features to refine node representations from large-scale unlabeled data. Traditional GCL-based recommendation models typically construct contrastive views via graph augmentation (e.g., stochastic node/edge dropout) or embedding-space perturbation, aiming to maximize representation consistency. However, these methods struggle to effectively model and interpret user preferences and consumption intents, limiting explainability and recommendation performance. To address these challenges, we propose JGC-IAGCL (<em>Joint Graph Convolution and Intent-Aware Graph Contrastive Learning</em>), an explainable recommendation framework. JGC-IAGCL integrates joint graph convolution to capture implicit user preferences and employs intent-aware graph contrastive learning to extract explicit user intents from user–item interactions. By fusing these features, our method generates evenly distributed, intent-propensity-aware user/item representations. Theoretical analysis shows that JGC-IAGCL mitigates popularity bias while enhancing the exposure of long-tail items. Extensive experiments on four highly sparse public datasets validate its effectiveness, demonstrating superior recommendation accuracy and improved interpretability.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103258"},"PeriodicalIF":15.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003318","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph contrastive learning (GCL) enhances recommendation accuracy by leveraging self-supervised features to refine node representations from large-scale unlabeled data. Traditional GCL-based recommendation models typically construct contrastive views via graph augmentation (e.g., stochastic node/edge dropout) or embedding-space perturbation, aiming to maximize representation consistency. However, these methods struggle to effectively model and interpret user preferences and consumption intents, limiting explainability and recommendation performance. To address these challenges, we propose JGC-IAGCL (Joint Graph Convolution and Intent-Aware Graph Contrastive Learning), an explainable recommendation framework. JGC-IAGCL integrates joint graph convolution to capture implicit user preferences and employs intent-aware graph contrastive learning to extract explicit user intents from user–item interactions. By fusing these features, our method generates evenly distributed, intent-propensity-aware user/item representations. Theoretical analysis shows that JGC-IAGCL mitigates popularity bias while enhancing the exposure of long-tail items. Extensive experiments on four highly sparse public datasets validate its effectiveness, demonstrating superior recommendation accuracy and improved interpretability.
JGC-IAGCL:融合联合图卷积和意图感知图对比学习的可解释推荐
图对比学习(GCL)通过利用自监督特征从大规模未标记数据中精炼节点表示来提高推荐的准确性。传统的基于gcl的推荐模型通常通过图增强(例如,随机节点/边缘删除)或嵌入空间扰动来构建对比视图,旨在最大限度地提高表示一致性。然而,这些方法很难有效地建模和解释用户偏好和消费意图,限制了可解释性和推荐性能。为了解决这些挑战,我们提出了JGC-IAGCL(联合图卷积和意图感知图对比学习),这是一个可解释的推荐框架。JGC-IAGCL集成了联合图卷积来捕获隐式用户偏好,并使用意图感知图对比学习从用户-项目交互中提取显式用户意图。通过融合这些特征,我们的方法生成均匀分布的、意图倾向感知的用户/项目表示。理论分析表明,JGC-IAGCL在增强长尾条目曝光的同时减轻了流行偏差。在四个高度稀疏的公共数据集上进行了大量实验,验证了其有效性,展示了卓越的推荐准确性和改进的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信