Integration of the All-in-One electrode in an electrochemical flow cell for in situ hydrogen peroxide supply in hydroxylation mediated by immobilized unspecific peroxygenase

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Giovanni V. Sayoga , Victoria S. Bueschler , Hubert Beisch , Bodo Fiedler , Daniel Ohde , Andreas Liese
{"title":"Integration of the All-in-One electrode in an electrochemical flow cell for in situ hydrogen peroxide supply in hydroxylation mediated by immobilized unspecific peroxygenase","authors":"Giovanni V. Sayoga ,&nbsp;Victoria S. Bueschler ,&nbsp;Hubert Beisch ,&nbsp;Bodo Fiedler ,&nbsp;Daniel Ohde ,&nbsp;Andreas Liese","doi":"10.1016/j.elecom.2025.107949","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen peroxide (H₂O₂) is a strong oxidizing agent that is commonly employed in chemical synthesis. Nevertheless, its utilization as a cosubstrate in biocatalytic reactions remains limited due to the deactivating effect on biocatalysts at an elevated concentration. An electrochemical synthesis of H₂O₂ represents an attractive approach, offering a controllable <em>in situ</em> generation of H₂O₂ without producing complex by-products. The objective of this study is to demonstrate the feasibility of the <em>in situ</em> electrogeneration of H₂O₂ using the All-in-One (AiO) electrode within a flow reactor technology. Integrating a bioelectrochemical system (BES) into a flow reactor technology, such as a flow cell, presents an alternative strategy for scale-up. In this study, the <em>in situ</em> generation of H₂O₂ is coupled with the hydroxylation of 4-ethylbenzoic acid catalyzed by the immobilized recombinant unspecific peroxygenase from <em>Agrocybe aegerita</em> (r<em>Aae</em>UPO) within a complete BES under batch and fed-batch operation modes. The electrochemical flow cell facilitates a controllable H₂O₂ generation by adjusting experimental parameters such as current density, aeration rate and residence time. The flow cell BES equipped with the AiO electrode yielded a catalytic productivity as high as 1.24 ± 0.02 mM h<sup>−1</sup> (4.95 ± 0.1 g L<sup>−</sup>1 d<sup>−1</sup>), a total turnover number of r<em>Aae</em>UPO up to 3.38 · 10<sup>5</sup> ± 702 mol mol<sup>−1</sup> and a turnover frequency up to 8.34 ± 0.14 s<sup>−1</sup>.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"177 ","pages":"Article 107949"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000888","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H₂O₂) is a strong oxidizing agent that is commonly employed in chemical synthesis. Nevertheless, its utilization as a cosubstrate in biocatalytic reactions remains limited due to the deactivating effect on biocatalysts at an elevated concentration. An electrochemical synthesis of H₂O₂ represents an attractive approach, offering a controllable in situ generation of H₂O₂ without producing complex by-products. The objective of this study is to demonstrate the feasibility of the in situ electrogeneration of H₂O₂ using the All-in-One (AiO) electrode within a flow reactor technology. Integrating a bioelectrochemical system (BES) into a flow reactor technology, such as a flow cell, presents an alternative strategy for scale-up. In this study, the in situ generation of H₂O₂ is coupled with the hydroxylation of 4-ethylbenzoic acid catalyzed by the immobilized recombinant unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) within a complete BES under batch and fed-batch operation modes. The electrochemical flow cell facilitates a controllable H₂O₂ generation by adjusting experimental parameters such as current density, aeration rate and residence time. The flow cell BES equipped with the AiO electrode yielded a catalytic productivity as high as 1.24 ± 0.02 mM h−1 (4.95 ± 0.1 g L1 d−1), a total turnover number of rAaeUPO up to 3.38 · 105 ± 702 mol mol−1 and a turnover frequency up to 8.34 ± 0.14 s−1.
固定化非特异性过氧酶介导羟基化过程中原位过氧化氢供应的一体化电极在电化学流动电池中的集成
过氧化氢(H₂O₂)是一种强氧化剂,通常用于化学合成。然而,由于在高浓度时对生物催化剂的失活作用,它作为生物催化反应的共底物的利用仍然有限。电化学合成h2o代表了一种有吸引力的方法,提供了一种可控的原位生成h2o而不产生复杂的副产物。本研究的目的是证明在流动反应器技术中使用All-in-One (AiO)电极原位发电H₂O₂的可行性。将生物电化学系统(BES)集成到流动反应器技术(如流动电池)中,为扩大规模提供了另一种策略。在本研究中,在间歇式和补料间歇式操作模式下,固定化重组agagrocybe aegerita (rAaeUPO)非特异性过氧酶催化4-乙基苯甲酸羟基化,同时原位生成H₂O₂。通过调节电流密度、曝气率和停留时间等实验参数,电化学流动电池可以实现可控的h2o2生成。采用AiO电极的BES液流电池的催化效率高达1.24±0.02 mM h−1(4.95±0.1 g L−1 d−1),rAaeUPO的总周转量高达3.38·105±702 mol mol−1,周转率高达8.34±0.14 s−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信