{"title":"Evaluating the impact of temperatures and exposure times on probiotics viability under pre- and post- technological processes","authors":"M.E. Morán , M.P. Martínez , P.J. Vairoletti , V.L. Poloni , L.R. Cavaglieri","doi":"10.1016/j.mimet.2025.107140","DOIUrl":null,"url":null,"abstract":"<div><div>Microorganisms such as probiotic yeasts and lactic acid bacteria are capable of surviving—and in some cases thriving—under challenging conditions, including varying feed compositions, moisture levels, and high temperatures typically encountered during feed processing, such as steam pelleting. The primary objective of this study was to evaluate the effect of different temperatures and exposure times on the viability of yeast- and lactic acid bacteria-based probiotics in aqueous solution. Following this, the probiotics were freeze-dried and incorporated separately into a feed matrix to assess their survival during both simulated and actual pelleting processes. In addition, a comparative analysis was conducted to evaluate the viability of <em>Saccharomyces boulardii</em> RC009 under two different drying methods: freeze-drying and fluidized bed drying.</div><div>All strains evaluated exhibited thermoresistance across the tested temperature range, with yeasts demonstrating greater resistance than bacterial strains. Notably, <em>Saccharomyces</em> spp. and <em>Pediococcus pentosaceus</em> showed the highest thermal tolerance. This enhanced resilience may be attributed to the presence of heat shock proteins (Hsps) and antioxidant defense systems in yeasts, and the production of heat-stable exopolysaccharides (EPS-DPS) in <em>P. pentosaceus</em>. Building on these findings, the freeze-dried probiotics were successfully integrated into a feed matrix and subjected to granulation processes to evaluate their viability post-processing. To our knowledge, this is the first study to systematically assess the impact of temperature and exposure time on probiotic viability during both pre- and post-technological treatments in the context of feed production.</div></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":"235 ","pages":"Article 107140"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167701225000569","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms such as probiotic yeasts and lactic acid bacteria are capable of surviving—and in some cases thriving—under challenging conditions, including varying feed compositions, moisture levels, and high temperatures typically encountered during feed processing, such as steam pelleting. The primary objective of this study was to evaluate the effect of different temperatures and exposure times on the viability of yeast- and lactic acid bacteria-based probiotics in aqueous solution. Following this, the probiotics were freeze-dried and incorporated separately into a feed matrix to assess their survival during both simulated and actual pelleting processes. In addition, a comparative analysis was conducted to evaluate the viability of Saccharomyces boulardii RC009 under two different drying methods: freeze-drying and fluidized bed drying.
All strains evaluated exhibited thermoresistance across the tested temperature range, with yeasts demonstrating greater resistance than bacterial strains. Notably, Saccharomyces spp. and Pediococcus pentosaceus showed the highest thermal tolerance. This enhanced resilience may be attributed to the presence of heat shock proteins (Hsps) and antioxidant defense systems in yeasts, and the production of heat-stable exopolysaccharides (EPS-DPS) in P. pentosaceus. Building on these findings, the freeze-dried probiotics were successfully integrated into a feed matrix and subjected to granulation processes to evaluate their viability post-processing. To our knowledge, this is the first study to systematically assess the impact of temperature and exposure time on probiotic viability during both pre- and post-technological treatments in the context of feed production.
期刊介绍:
The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach.
All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.