Thermodynamically Self-Assembly Hydration-Cycle Crystals for Multidimensional Off-Grid Water-Energy Nexus

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuai Peng, Longqian Xu, Shihai Deng, Chengsi Hou, Yue Wang, Zuofeng Chen, Zhendong Lei, Deli Wu
{"title":"Thermodynamically Self-Assembly Hydration-Cycle Crystals for Multidimensional Off-Grid Water-Energy Nexus","authors":"Shuai Peng,&nbsp;Longqian Xu,&nbsp;Shihai Deng,&nbsp;Chengsi Hou,&nbsp;Yue Wang,&nbsp;Zuofeng Chen,&nbsp;Zhendong Lei,&nbsp;Deli Wu","doi":"10.1002/adma.202504614","DOIUrl":null,"url":null,"abstract":"<p>Solar-driven interfacial evaporation (SDIE) technology shows water-energy solution potential but faces industrialization barriers from substrate scalability limits. Here, a regenerative hydrated coordination scaffold (R-HCS) is presented that redefines material design by leveraging water molecules as dynamic structural directors throughout the material lifecycle. Unlike conventional hydrogel/aerogel systems requiring energy-intensive crosslinking (−<i>ΔE</i> = 1–2 orders of magnitude) or freeze-drying processes, R-HCS forms spontaneously through water-mediated self-assembly of calcium sulfate under ambient conditions. Hydration shells drive hierarchical crystallization while fundamentally restructuring hydrogen-bond networks, achieving a 44% reduction in water evaporation enthalpy. The framework demonstrates unique thermal reconfiguration, exhibiting reversible dissociation-reassembly behavior (&gt;100 °C threshold) that enables full material regeneration (performance decay &lt; 5%) using solar thermal energy/waste heat without chemical additives. Crucially, RHCS maintains exceptional ligand stability even when utilizing natural seawater. As proof-of-concept, an R-HCS integrated passive evaporation module achieves 77.2% water recovery under 1 sun irradiation, coupled with 30 °C thermal assembly temperature reduction at 1.5 sun intensity. Concurrently, crystallizer units maintain stable 2.31 kg m<sup>−2</sup> h<sup>−1</sup> evaporation rates in 3.5 wt% brine. This water-centric design paradigm establishes a new class of adaptive materials where solvent–solute interactions become the driving force for circular water-energy systems, potentially redefining sustainable infrastructure for off-grid regions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202504614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial evaporation (SDIE) technology shows water-energy solution potential but faces industrialization barriers from substrate scalability limits. Here, a regenerative hydrated coordination scaffold (R-HCS) is presented that redefines material design by leveraging water molecules as dynamic structural directors throughout the material lifecycle. Unlike conventional hydrogel/aerogel systems requiring energy-intensive crosslinking (−ΔE = 1–2 orders of magnitude) or freeze-drying processes, R-HCS forms spontaneously through water-mediated self-assembly of calcium sulfate under ambient conditions. Hydration shells drive hierarchical crystallization while fundamentally restructuring hydrogen-bond networks, achieving a 44% reduction in water evaporation enthalpy. The framework demonstrates unique thermal reconfiguration, exhibiting reversible dissociation-reassembly behavior (>100 °C threshold) that enables full material regeneration (performance decay < 5%) using solar thermal energy/waste heat without chemical additives. Crucially, RHCS maintains exceptional ligand stability even when utilizing natural seawater. As proof-of-concept, an R-HCS integrated passive evaporation module achieves 77.2% water recovery under 1 sun irradiation, coupled with 30 °C thermal assembly temperature reduction at 1.5 sun intensity. Concurrently, crystallizer units maintain stable 2.31 kg m−2 h−1 evaporation rates in 3.5 wt% brine. This water-centric design paradigm establishes a new class of adaptive materials where solvent–solute interactions become the driving force for circular water-energy systems, potentially redefining sustainable infrastructure for off-grid regions.

Abstract Image

Abstract Image

多维离网水能关系的热力学自组装水合循环晶体
太阳能驱动界面蒸发(SDIE)技术显示了水能解决方案的潜力,但面临着基材可扩展性限制的工业化障碍。本文提出了一种再生水合配位支架(R-HCS),通过利用水分子作为整个材料生命周期的动态结构指导,重新定义了材料设计。不像传统的水凝胶/气凝胶系统需要能量密集的交联(−ΔE = 1-2个数量级)或冷冻干燥过程,R-HCS在环境条件下通过水介导的硫酸钙自组装自发形成。水化壳驱动分层结晶,同时从根本上重组氢键网络,使水蒸发焓降低44%。该框架表现出独特的热重构,表现出可逆的解离-重组行为(100°C阈值),使材料完全再生(性能衰减)。5%)利用太阳能热能/废热,不含化学添加剂。至关重要的是,即使在使用天然海水时,RHCS也能保持出色的配体稳定性。作为概念验证,R-HCS集成被动蒸发模块在1次太阳照射下可实现77.2%的水回收率,同时在1.5次太阳强度下可将热组件温度降低30°C。同时,结晶器单元在3.5 wt%的盐水中保持稳定的2.31 kg m−2 h−1蒸发速率。这种以水为中心的设计范式建立了一种新型的自适应材料,其中溶剂-溶质相互作用成为循环水能系统的驱动力,可能重新定义离网地区的可持续基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信