Mechanism of S-Palmitoylation in Polystyrene Nanoplastics-Induced Macrophage Cuproptosis Contributing to Emphysema through Alveolar Epithelial Cell Pyroptosis
Ning Bu, Qing Du, Tian Xiao, Zhenhao Jiang, Jiaheng Lin, Weiyong Chen, Bowen Fan, Jingyuan Wang, Haibo Xia, Cheng Cheng, Qian Bian, Qizhan Liu
{"title":"Mechanism of S-Palmitoylation in Polystyrene Nanoplastics-Induced Macrophage Cuproptosis Contributing to Emphysema through Alveolar Epithelial Cell Pyroptosis","authors":"Ning Bu, Qing Du, Tian Xiao, Zhenhao Jiang, Jiaheng Lin, Weiyong Chen, Bowen Fan, Jingyuan Wang, Haibo Xia, Cheng Cheng, Qian Bian, Qizhan Liu","doi":"10.1021/acsnano.5c02892","DOIUrl":null,"url":null,"abstract":"More than microplastics, nanoplastics may pose a greater toxic effect on humans due to their unique physicochemical properties. Currently, research on lung diseases caused by respiratory exposure to nanoplastics is scarce, with epigenetic mechanisms warranting further investigation. In the present study, we exposed rats to polystyrene nanoplastics (PS-NPs) via an oral-nasal exposure system and found that PS-NPs exposure resulted in emphysema. Mechanistically, PS-NPs entered macrophages and competitively bound to sigma nonopioid intracellular receptor 1 (SIGMAR1), leading to an increase in free zDHHC palmitoyltransferase 14 (zDHHC14). This, in turn, caused elevated palmitoylation of solute carrier family 31 member 1 (SLC31A1) in macrophages, inhibiting its ubiquitination and degradation, thereby enhancing SLC31A1 expression. The increased expression of SLC31A1 promoted cuproptosis of macrophages and elevated tumor necrosis factor-α (TNF-α) secretion, which activated the NLR family pyrin domain containing 3/matrix metallopeptidase 9 (NLRP3/MMP-9) pathway in alveolar epithelial cells (AECs). This process mediated pyroptosis and degradation of extracellular matrix (ECM), resulting in the destruction of alveolar structure and development of emphysema. The findings demonstrate a previously unknown molecular mechanism by which PS-NPs induce emphysema. The findings have implications for the prevention and treatment of respiratory system damage caused by nanoparticles.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"14 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02892","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
More than microplastics, nanoplastics may pose a greater toxic effect on humans due to their unique physicochemical properties. Currently, research on lung diseases caused by respiratory exposure to nanoplastics is scarce, with epigenetic mechanisms warranting further investigation. In the present study, we exposed rats to polystyrene nanoplastics (PS-NPs) via an oral-nasal exposure system and found that PS-NPs exposure resulted in emphysema. Mechanistically, PS-NPs entered macrophages and competitively bound to sigma nonopioid intracellular receptor 1 (SIGMAR1), leading to an increase in free zDHHC palmitoyltransferase 14 (zDHHC14). This, in turn, caused elevated palmitoylation of solute carrier family 31 member 1 (SLC31A1) in macrophages, inhibiting its ubiquitination and degradation, thereby enhancing SLC31A1 expression. The increased expression of SLC31A1 promoted cuproptosis of macrophages and elevated tumor necrosis factor-α (TNF-α) secretion, which activated the NLR family pyrin domain containing 3/matrix metallopeptidase 9 (NLRP3/MMP-9) pathway in alveolar epithelial cells (AECs). This process mediated pyroptosis and degradation of extracellular matrix (ECM), resulting in the destruction of alveolar structure and development of emphysema. The findings demonstrate a previously unknown molecular mechanism by which PS-NPs induce emphysema. The findings have implications for the prevention and treatment of respiratory system damage caused by nanoparticles.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.