Ruidong Xiang, Chief Ben-Eghan, Yang Liu, David Roberts, Scott Ritchie, Samuel A. Lambert, Yu Xu, Fumihiko Takeuchi, Michael Inouye
{"title":"Genome-wide analyses of variance in blood cell phenotypes provide new insights into complex trait biology and prediction","authors":"Ruidong Xiang, Chief Ben-Eghan, Yang Liu, David Roberts, Scott Ritchie, Samuel A. Lambert, Yu Xu, Fumihiko Takeuchi, Michael Inouye","doi":"10.1038/s41467-025-59525-4","DOIUrl":null,"url":null,"abstract":"<p>Blood cell phenotypes are routinely tested in healthcare to inform clinical decisions. Genetic variants influencing mean blood cell phenotypes have been used to understand disease aetiology and improve prediction; however, additional information may be captured by genetic effects on observed variance. Here, we mapped variance quantitative trait loci (vQTL), i.e. genetic loci associated with trait variance, for 29 blood cell phenotypes from the UK Biobank (N ~ 408,111). We discovered 176 independent blood cell vQTLs, of which 147 were not found by additive QTL mapping. vQTLs displayed on average 1.8-fold stronger negative selection than additive QTL, highlighting that selection acts to reduce extreme blood cell phenotypes. Variance polygenic scores (vPGSs) were constructed to stratify individuals in the INTERVAL cohort (N ~ 40,466), where the genetically most variable individuals had increased conventional PGS accuracy (by ~19%) relative to the genetically least variable individuals. Genetic prediction of blood cell traits improved by ~10% on average combining PGS with vPGS. Using Mendelian randomisation and vPGS association analyses, we found that alcohol consumption significantly increased blood cell trait variances highlighting the utility of blood cell vQTLs and vPGSs to provide novel insight into phenotype aetiology as well as improve prediction.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"48 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59525-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Blood cell phenotypes are routinely tested in healthcare to inform clinical decisions. Genetic variants influencing mean blood cell phenotypes have been used to understand disease aetiology and improve prediction; however, additional information may be captured by genetic effects on observed variance. Here, we mapped variance quantitative trait loci (vQTL), i.e. genetic loci associated with trait variance, for 29 blood cell phenotypes from the UK Biobank (N ~ 408,111). We discovered 176 independent blood cell vQTLs, of which 147 were not found by additive QTL mapping. vQTLs displayed on average 1.8-fold stronger negative selection than additive QTL, highlighting that selection acts to reduce extreme blood cell phenotypes. Variance polygenic scores (vPGSs) were constructed to stratify individuals in the INTERVAL cohort (N ~ 40,466), where the genetically most variable individuals had increased conventional PGS accuracy (by ~19%) relative to the genetically least variable individuals. Genetic prediction of blood cell traits improved by ~10% on average combining PGS with vPGS. Using Mendelian randomisation and vPGS association analyses, we found that alcohol consumption significantly increased blood cell trait variances highlighting the utility of blood cell vQTLs and vPGSs to provide novel insight into phenotype aetiology as well as improve prediction.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.