Beyond the classical chiral resolution: Modern enantioselective synthetic strategies used in the preparation of new chiral kinase inhibitors including drugs for autoimmune diseases and antitumoral drugs
Cesar Emiliano Hoffmann da Silva , Grace Gosmann , Rafael Roesler , Marcela Silva Lopes , Saulo Fernandes de Andrade
{"title":"Beyond the classical chiral resolution: Modern enantioselective synthetic strategies used in the preparation of new chiral kinase inhibitors including drugs for autoimmune diseases and antitumoral drugs","authors":"Cesar Emiliano Hoffmann da Silva , Grace Gosmann , Rafael Roesler , Marcela Silva Lopes , Saulo Fernandes de Andrade","doi":"10.1016/j.ejmech.2025.117730","DOIUrl":null,"url":null,"abstract":"<div><div>Kinase inhibitors is one of the most approved class by FDA in this century. These proteins are versatile targets that have a huge impact in several pharmacotherapy including against cancer, autoimunne and rare diseases. Thus, the number of patents that aim these targets are increasing and is becoming harder to be innovative in this field. Furthermore, the design of ATP-competitive inhibitors is the major strategy used to develop new kinase inhibitors and there are few regions in the ATP cleft or around it, which are generally explored by the commercially available inhibitor drugs. In this way in this review, we focused in the use of modern enantioselective strategies that were carried out in the last years to prepare new chiral kinase inhibitors as an emerging field that resulted in several new potent innovative approved drugs. Also we suggested new trends in this modern relevant topic and analyzed kinase-drug complexes highlighting the interactions that support the importance of the stereochemistry.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"293 ","pages":"Article 117730"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523425004957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kinase inhibitors is one of the most approved class by FDA in this century. These proteins are versatile targets that have a huge impact in several pharmacotherapy including against cancer, autoimunne and rare diseases. Thus, the number of patents that aim these targets are increasing and is becoming harder to be innovative in this field. Furthermore, the design of ATP-competitive inhibitors is the major strategy used to develop new kinase inhibitors and there are few regions in the ATP cleft or around it, which are generally explored by the commercially available inhibitor drugs. In this way in this review, we focused in the use of modern enantioselective strategies that were carried out in the last years to prepare new chiral kinase inhibitors as an emerging field that resulted in several new potent innovative approved drugs. Also we suggested new trends in this modern relevant topic and analyzed kinase-drug complexes highlighting the interactions that support the importance of the stereochemistry.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.