{"title":"Integrating Generative Artificial Intelligence into Social Science Research: Measurement, Prompting, and Simulation","authors":"Thomas Davidson, Daniel Karell","doi":"10.1177/00491241251339184","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (AI) offers new capabilities for analyzing data, creating synthetic media, and simulating realistic social interactions. This essay introduces a special issue that examines how these and other affordances of generative AI can advance social science research. We discuss three core themes that appear across the contributed articles: rigorous measurement and validation of AI-generated outputs, optimizing model performance and reproducibility via prompting, and novel uses of AI for the simulation of attitudes and behaviors. We highlight how generative AI enable new methodological innovations that complement and augment existing approaches. This essay and the special issue’s ten articles collectively provide a detailed roadmap for integrating generative AI into social science research in theoretically informed and methodologically rigorous ways. We conclude by reflecting on the implications of the ongoing advances in AI.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"15 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241251339184","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence (AI) offers new capabilities for analyzing data, creating synthetic media, and simulating realistic social interactions. This essay introduces a special issue that examines how these and other affordances of generative AI can advance social science research. We discuss three core themes that appear across the contributed articles: rigorous measurement and validation of AI-generated outputs, optimizing model performance and reproducibility via prompting, and novel uses of AI for the simulation of attitudes and behaviors. We highlight how generative AI enable new methodological innovations that complement and augment existing approaches. This essay and the special issue’s ten articles collectively provide a detailed roadmap for integrating generative AI into social science research in theoretically informed and methodologically rigorous ways. We conclude by reflecting on the implications of the ongoing advances in AI.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.