Piezoelectric ion gated organic electrochemical transistors for efficient vibration sensing and on-site amplification

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Linta Sohail, Sofia Drakopoulou, Tiago L. Costa, George D. Spyropoulos
{"title":"Piezoelectric ion gated organic electrochemical transistors for efficient vibration sensing and on-site amplification","authors":"Linta Sohail, Sofia Drakopoulou, Tiago L. Costa, George D. Spyropoulos","doi":"10.1038/s41528-025-00418-3","DOIUrl":null,"url":null,"abstract":"<p>Accurate detection of physiological vibrations is vital for monitoring health and enabling sensory feedback in bioelectronics. Current technologies often suffer from low signal-to-noise ratios (SNR), bulkiness, and the need for external amplification. Here, we introduce piezoelectric internal ion-gated organic electrochemical transistors (Piezo-IGTs), which efficiently convert mechanical vibrations into amplified electrical signals. These devices integrate laminated P(VDF-TrFE) microfiber films as the gate atop the transistor channel, generating voltage upon deformation to modulate mobile ions in the conducting polymer. Fabricated via sequential deposition and lamination, Piezo-IGTs achieve high fill factors and efficient on-site amplification, improving SNR over standalone piezoelectric films. They operate near 0 V gate voltage, enabling low-power performance. We validate their functionality in mechanomyography, speech recognition, and mechanocardiography using microscale Piezo-IGTs. This self-contained, flexible architecture demonstrates promise for integration into implantable and wearable systems, offering real-time, high-fidelity acquisition of bio-mechanical signals in next-generation health monitoring and neuroprosthetic applications.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"27 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00418-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate detection of physiological vibrations is vital for monitoring health and enabling sensory feedback in bioelectronics. Current technologies often suffer from low signal-to-noise ratios (SNR), bulkiness, and the need for external amplification. Here, we introduce piezoelectric internal ion-gated organic electrochemical transistors (Piezo-IGTs), which efficiently convert mechanical vibrations into amplified electrical signals. These devices integrate laminated P(VDF-TrFE) microfiber films as the gate atop the transistor channel, generating voltage upon deformation to modulate mobile ions in the conducting polymer. Fabricated via sequential deposition and lamination, Piezo-IGTs achieve high fill factors and efficient on-site amplification, improving SNR over standalone piezoelectric films. They operate near 0 V gate voltage, enabling low-power performance. We validate their functionality in mechanomyography, speech recognition, and mechanocardiography using microscale Piezo-IGTs. This self-contained, flexible architecture demonstrates promise for integration into implantable and wearable systems, offering real-time, high-fidelity acquisition of bio-mechanical signals in next-generation health monitoring and neuroprosthetic applications.

Abstract Image

用于高效振动传感和现场放大的压电离子门控有机电化学晶体管
在生物电子学中,准确检测生理振动对于监测健康和实现感官反馈至关重要。当前的技术常常受到低信噪比(SNR)、体积庞大和需要外部放大的困扰。在这里,我们介绍了压电内部离子门控有机电化学晶体管(压电- igts),它有效地将机械振动转换为放大的电信号。这些器件集成了层压P(VDF-TrFE)微纤维薄膜作为晶体管通道顶部的栅极,在变形时产生电压,以调制导电聚合物中的移动离子。压电igts通过顺序沉积和层压制造,实现了高填充系数和高效的现场放大,提高了独立压电薄膜的信噪比。它们在0 V栅极电压附近工作,从而实现低功耗性能。我们使用微型压电igts验证了它们在肌力图、语音识别和心脏力学图中的功能。这种独立的、灵活的架构展示了集成到植入式和可穿戴系统的前景,在下一代健康监测和神经假肢应用中提供实时、高保真的生物机械信号采集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信