Shape of a Membrane on a Liquid Interface with Arbitrary Curvatures

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zachariah S. Schrecengost, Seif Hejazine, Jordan V. Barrett, Vincent Démery, Joseph D. Paulsen
{"title":"Shape of a Membrane on a Liquid Interface with Arbitrary Curvatures","authors":"Zachariah S. Schrecengost, Seif Hejazine, Jordan V. Barrett, Vincent Démery, Joseph D. Paulsen","doi":"10.1103/physrevlett.134.188202","DOIUrl":null,"url":null,"abstract":"We study the deformation of a liquid interface with arbitrary principal curvatures by a flat circular sheet. Working first at small slopes, we determine the shape of the sheet analytically in the membrane limit, where the sheet is inextensible yet free to bend and compress. We find that the sheet takes a cylindrical shape on interfaces with negative Gaussian curvature. On interfaces with positive Gaussian curvature, an inner region still adopts a cylindrical shape while the outer region is under azimuthal compression. Numerical energy minimization confirms our predictions and shows that this behavior holds for finite slopes. Experiments on a thin polystyrene film at an anisotropic air-water interface show consistent behaviors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"53 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.188202","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the deformation of a liquid interface with arbitrary principal curvatures by a flat circular sheet. Working first at small slopes, we determine the shape of the sheet analytically in the membrane limit, where the sheet is inextensible yet free to bend and compress. We find that the sheet takes a cylindrical shape on interfaces with negative Gaussian curvature. On interfaces with positive Gaussian curvature, an inner region still adopts a cylindrical shape while the outer region is under azimuthal compression. Numerical energy minimization confirms our predictions and shows that this behavior holds for finite slopes. Experiments on a thin polystyrene film at an anisotropic air-water interface show consistent behaviors. Published by the American Physical Society 2025
具有任意曲率的液体界面上膜的形状
本文研究了具有任意主曲率的液体界面在平面圆片上的变形。首先在小斜坡上工作,我们在膜极限下分析确定板的形状,在膜极限下,板是不可扩展的,但可以自由弯曲和压缩。我们发现薄片在负高斯曲率的界面上呈圆柱形。在高斯曲率为正的界面上,内部区域仍为圆柱形,而外部区域受到方位角压缩。数值能量最小化证实了我们的预测,并表明这种行为适用于有限的斜率。在各向异性空气-水界面上对聚苯乙烯薄膜进行了实验,得到了一致的行为。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信