S. W. Bai, X. F. Yang, Á. Koszorús, J. C. Berengut, J. Billowes, M. L. Bissell, K. Blaum, A. Borschevsky, P. Campbell, B. Cheal, C. S. Devlin, K. T. Flanagan, R. F. Garcia Ruiz, H. Heylen, J. D. Holt, B. S. Hu, A. Kanellakopoulos, J. Krämer, V. Lagaki, B. Maaß, S. Malbrunot-Ettenauer, T. Miyagi, K. König, M. Kortelainen, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G. Reinhard, M. L. Reitsma, L. V. Rodríguez, F. Sommer, Z. Y. Xu
{"title":"Charge Radii of Neutron-Rich Scandium Isotopes and the Seniority Symmetry in the 0f7/2 Shell","authors":"S. W. Bai, X. F. Yang, Á. Koszorús, J. C. Berengut, J. Billowes, M. L. Bissell, K. Blaum, A. Borschevsky, P. Campbell, B. Cheal, C. S. Devlin, K. T. Flanagan, R. F. Garcia Ruiz, H. Heylen, J. D. Holt, B. S. Hu, A. Kanellakopoulos, J. Krämer, V. Lagaki, B. Maaß, S. Malbrunot-Ettenauer, T. Miyagi, K. König, M. Kortelainen, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G. Reinhard, M. L. Reitsma, L. V. Rodríguez, F. Sommer, Z. Y. Xu","doi":"10.1103/physrevlett.134.182501","DOIUrl":null,"url":null,"abstract":"Nuclear charge radii of neutron-rich Sc</a:mi></a:mrow>47</a:mn>–</a:mi>49</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> isotopes were measured using collinear laser spectroscopy at CERN-ISOLDE. The new data reveal that the charge radii of scandium isotopes exhibit a distinct trend between <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>N</c:mi><c:mo>=</c:mo><c:mn>20</c:mn></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>N</e:mi><e:mo>=</e:mo><e:mn>28</e:mn></e:math>, with <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi>Sc</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>41</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> and <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mmultiscripts><i:mrow><i:mi>Sc</i:mi></i:mrow><i:mprescripts/><i:none/><i:mrow><i:mn>49</i:mn></i:mrow></i:mmultiscripts></i:mrow></i:math> isotopes having similar values, mirroring the closeness of the charge radii of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mmultiscripts><k:mrow><k:mi>Ca</k:mi></k:mrow><k:mprescripts/><k:none/><k:mrow><k:mn>40</k:mn></k:mrow></k:mmultiscripts></k:mrow></k:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mmultiscripts><m:mrow><m:mi>Ca</m:mi></m:mrow><m:mprescripts/><m:none/><m:mrow><m:mn>48</m:mn></m:mrow></m:mmultiscripts></m:mrow></m:math>. Theoretical models that successfully interpret the radii of calcium isotopes could not account for the observed behavior in scandium radii, in particular the reduced odd-even staggering. Remarkably, the inclusion of the new <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mmultiscripts><o:mrow><o:mi>Sc</o:mi></o:mrow><o:mprescripts/><o:none/><o:mrow><o:mn>49</o:mn></o:mrow></o:mmultiscripts></o:mrow></o:math> radius data has unveiled a similar trend in the charge radii of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>N</q:mi><q:mo>=</q:mo><q:mn>28</q:mn></q:math> isotones and <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>Z</s:mi><s:mo>=</s:mo><s:mn>20</s:mn></s:math> isotopes when adding the protons atop the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mmultiscripts><u:mrow><u:mi>Ca</u:mi></u:mrow><u:mprescripts/><u:none/><u:mrow><u:mn>48</u:mn></u:mrow></u:mmultiscripts></u:mrow></u:math> core and the neutrons atop the <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mmultiscripts><w:mrow><w:mi>Ca</w:mi></w:mrow><w:mprescripts/><w:none/><w:mrow><w:mn>40</w:mn></w:mrow></w:mmultiscripts></w:mrow></w:math> core, respectively. We demonstrate that this trend is consistent with the prediction of the seniority model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"27 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.182501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear charge radii of neutron-rich Sc47–49 isotopes were measured using collinear laser spectroscopy at CERN-ISOLDE. The new data reveal that the charge radii of scandium isotopes exhibit a distinct trend between N=20 and N=28, with Sc41 and Sc49 isotopes having similar values, mirroring the closeness of the charge radii of Ca40 and Ca48. Theoretical models that successfully interpret the radii of calcium isotopes could not account for the observed behavior in scandium radii, in particular the reduced odd-even staggering. Remarkably, the inclusion of the new Sc49 radius data has unveiled a similar trend in the charge radii of N=28 isotones and Z=20 isotopes when adding the protons atop the Ca48 core and the neutrons atop the Ca40 core, respectively. We demonstrate that this trend is consistent with the prediction of the seniority model. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks