Strength improvement achieved by microstructure regulation for wire-arc directed energy deposited Mg-Li alloy

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Yueling Guo, Xinglong Di, Ruiwen Shao, Ming Fan, Xiaoxue Chang, Changmeng Liu, En-Hou Han
{"title":"Strength improvement achieved by microstructure regulation for wire-arc directed energy deposited Mg-Li alloy","authors":"Yueling Guo, Xinglong Di, Ruiwen Shao, Ming Fan, Xiaoxue Chang, Changmeng Liu, En-Hou Han","doi":"10.1016/j.jma.2025.04.016","DOIUrl":null,"url":null,"abstract":"Here we fabricate LA103Z Mg-Li alloy via wire-arc directed energy deposition (WA-DED), and subsequent aging treatment is employed to improve its mechanical property. Results show that a typical dual-phase microstructure is formed upon WA-DED, consisting of α-Mg, β-Li, AlLi and Li<sub>2</sub>MgAl, with negligible porosity, and the core-shell Li<sub>2</sub>MgAl/AlLi composite particles are also generated. After aging treatment, the microstructure is slightly coarsened, together with the precipitation of nano-sized D0<sub>3</sub>−Mg<sub>3</sub>Al particles, as well as the dissolution and the mergence of α-Mg phases. Negligible strength and ductility anisotropies are found for the as-deposited alloy. Significant strength increment is achieved via aging treatment, and the ultimate strength increases by ∼20% (∼34 MPa), reaching 200±1 MPa. Both as-deposited and aged alloys show acceptable uniform elongation, with a transgranular fracture mode. Precipitation strengthening enabled by nano-sized D0<sub>3</sub>−Mg<sub>3</sub>Al precipitates is primarily responsible for the strength increment mediated by aging treatment. Grain refinement strengthening and solid solution strengthening provide additional contributions to the improved strength. Our work thus offers an applicable additive manufacturing pathway for the efficient and safety-guaranteed fabrication of Mg-Li alloy components with decent mechanical property.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.04.016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Here we fabricate LA103Z Mg-Li alloy via wire-arc directed energy deposition (WA-DED), and subsequent aging treatment is employed to improve its mechanical property. Results show that a typical dual-phase microstructure is formed upon WA-DED, consisting of α-Mg, β-Li, AlLi and Li2MgAl, with negligible porosity, and the core-shell Li2MgAl/AlLi composite particles are also generated. After aging treatment, the microstructure is slightly coarsened, together with the precipitation of nano-sized D03−Mg3Al particles, as well as the dissolution and the mergence of α-Mg phases. Negligible strength and ductility anisotropies are found for the as-deposited alloy. Significant strength increment is achieved via aging treatment, and the ultimate strength increases by ∼20% (∼34 MPa), reaching 200±1 MPa. Both as-deposited and aged alloys show acceptable uniform elongation, with a transgranular fracture mode. Precipitation strengthening enabled by nano-sized D03−Mg3Al precipitates is primarily responsible for the strength increment mediated by aging treatment. Grain refinement strengthening and solid solution strengthening provide additional contributions to the improved strength. Our work thus offers an applicable additive manufacturing pathway for the efficient and safety-guaranteed fabrication of Mg-Li alloy components with decent mechanical property.

Abstract Image

通过组织调控提高了线弧定向能镁合金的强度
采用线弧定向能沉积(WA-DED)法制备LA103Z Mg-Li合金,并对其进行时效处理以提高其力学性能。结果表明:WA-DED形成了典型的由α-Mg、β-Li、AlLi和Li2MgAl组成的双相微观结构,孔隙率可忽略不计,同时生成了核壳状的Li2MgAl/AlLi复合颗粒;时效处理后,显微组织略有粗化,纳米级D03−Mg3Al颗粒析出,α-Mg相析出并合并。沉积态合金的强度和塑性各向异性可以忽略不计。通过时效处理,强度显著提高,极限强度提高了~ 20% (~ 34 MPa),达到200±1 MPa。沉积态和时效态合金均表现出可接受的均匀伸长率,呈穿晶断裂模式。纳米D03−Mg3Al析出物的析出强化是时效处理导致强度增加的主要原因。晶粒细化强化和固溶强化对强度的提高有额外的贡献。因此,我们的工作为高效、安全地制造具有良好力学性能的Mg-Li合金部件提供了一种适用的增材制造途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信