Kimberly Reinhold, Marci Iadarola, Shi Tang, Annabel Chang, Whitney Kuwamoto, Madeline A. Albanese, Senmiao Sun, Richard Hakim, Joshua Zimmer, Wengang Wang, Bernardo L. Sabatini
{"title":"Striatum supports fast learning but not memory recall","authors":"Kimberly Reinhold, Marci Iadarola, Shi Tang, Annabel Chang, Whitney Kuwamoto, Madeline A. Albanese, Senmiao Sun, Richard Hakim, Joshua Zimmer, Wengang Wang, Bernardo L. Sabatini","doi":"10.1038/s41586-025-08969-1","DOIUrl":null,"url":null,"abstract":"<p>Animals learn to carry out motor actions in specific sensory contexts to achieve goals. The striatum has been implicated in producing sensory–motor associations<sup>1</sup>, yet its contributions to memory formation and recall are not clear. Here, to investigate the contribution of the striatum to these processes, mice were taught to associate a cue, consisting of optogenetic activation of striatum-projecting neurons in visual cortex, with the availability of a food pellet that could be retrieved by forelimb reaching. As necessary to direct learning, striatal neural activity encoded both the sensory context and the outcome of reaching. With training, the rate of cued reaching increased, but brief optogenetic inhibition of striatal activity arrested learning and prevented trial-to-trial improvements in performance. However, the same manipulation did not affect performance improvements already consolidated into short-term (less than 1 h) or long-term (days) memories. Hence, striatal activity is necessary for trial-to-trial improvements in performance, leading to plasticity in other brain areas that mediate memory recall.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"104 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08969-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Animals learn to carry out motor actions in specific sensory contexts to achieve goals. The striatum has been implicated in producing sensory–motor associations1, yet its contributions to memory formation and recall are not clear. Here, to investigate the contribution of the striatum to these processes, mice were taught to associate a cue, consisting of optogenetic activation of striatum-projecting neurons in visual cortex, with the availability of a food pellet that could be retrieved by forelimb reaching. As necessary to direct learning, striatal neural activity encoded both the sensory context and the outcome of reaching. With training, the rate of cued reaching increased, but brief optogenetic inhibition of striatal activity arrested learning and prevented trial-to-trial improvements in performance. However, the same manipulation did not affect performance improvements already consolidated into short-term (less than 1 h) or long-term (days) memories. Hence, striatal activity is necessary for trial-to-trial improvements in performance, leading to plasticity in other brain areas that mediate memory recall.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.