Gray‐Level Guided Image‐Activated Droplet Sorter for Label‐Free, High‐Accuracy Screening of Single‐Cell on Demand

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-08 DOI:10.1002/smll.202500520
Zhen Liu, Yidi Zhang, Jianing Li, Shuxun Chen, Han Zhao, Xin Zhao, Dong Sun
{"title":"Gray‐Level Guided Image‐Activated Droplet Sorter for Label‐Free, High‐Accuracy Screening of Single‐Cell on Demand","authors":"Zhen Liu, Yidi Zhang, Jianing Li, Shuxun Chen, Han Zhao, Xin Zhao, Dong Sun","doi":"10.1002/smll.202500520","DOIUrl":null,"url":null,"abstract":"Single‐cell encapsulation in droplet microfluidics has become a powerful tool in precision medicine, single‐cell analysis, and immunotherapy. However, droplet generation with a single‐cell encapsulation is a random process, which also results in a large number of empty and multi‐cell droplets. Current microfluidics sorting technologies suffer from drawbacks such as fluorescent labeling, inability to remove multi‐cell droplets, or low throughput. This paper presents a gray‐level guided image‐activated droplet sorter (GL‐IADS), which enables label‐free, high‐accuracy screening of single‐cell droplets by rejecting empty and multi‐cell droplets. The gray‐level based recognition method can accurately classify droplet images (empty, single‐cell, and multi‐cell droplets), especially in differentiating empty and cell‐laden droplets (accuracy of 100%). Crucially, this method reduces the image processing time to ≈300 µs, which makes the GL‐IADS possible to reach an ultra‐high sorting throughput up to hundreds or even KHz. The GL‐IADS integrates the novel recognition method with a detachable acoustofluidic system, achieving sorting purity of 97.9%, 97.4%, and >99% for single‐cell, multi‐cell, and cell‐laden droplets, respectively, with a throughput of 43 Hz. The GL‐IADS holds promise for numerous biological applications that are previously difficult with fluorescence‐based technologies.","PeriodicalId":228,"journal":{"name":"Small","volume":"25 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500520","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single‐cell encapsulation in droplet microfluidics has become a powerful tool in precision medicine, single‐cell analysis, and immunotherapy. However, droplet generation with a single‐cell encapsulation is a random process, which also results in a large number of empty and multi‐cell droplets. Current microfluidics sorting technologies suffer from drawbacks such as fluorescent labeling, inability to remove multi‐cell droplets, or low throughput. This paper presents a gray‐level guided image‐activated droplet sorter (GL‐IADS), which enables label‐free, high‐accuracy screening of single‐cell droplets by rejecting empty and multi‐cell droplets. The gray‐level based recognition method can accurately classify droplet images (empty, single‐cell, and multi‐cell droplets), especially in differentiating empty and cell‐laden droplets (accuracy of 100%). Crucially, this method reduces the image processing time to ≈300 µs, which makes the GL‐IADS possible to reach an ultra‐high sorting throughput up to hundreds or even KHz. The GL‐IADS integrates the novel recognition method with a detachable acoustofluidic system, achieving sorting purity of 97.9%, 97.4%, and >99% for single‐cell, multi‐cell, and cell‐laden droplets, respectively, with a throughput of 43 Hz. The GL‐IADS holds promise for numerous biological applications that are previously difficult with fluorescence‐based technologies.
灰度引导图像激活液滴分选仪,用于无标签,高精度的单细胞筛选
微流体液滴中的单细胞包封技术已成为精密医学、单细胞分析和免疫治疗领域的有力工具。然而,单细胞封装的液滴生成是一个随机过程,这也会导致大量的空液滴和多细胞液滴。当前的微流体分选技术存在荧光标记、无法去除多细胞液滴或低通量等缺点。本文提出了一种灰度引导图像激活液滴分选器(GL - IADS),它可以通过拒绝空液滴和多细胞液滴来实现无标签、高精度的单细胞液滴筛选。基于灰度的液滴识别方法可以准确地对液滴图像(空液滴、单细胞液滴和多细胞液滴)进行分类,特别是在区分空液滴和满细胞液滴方面(准确率为100%)。至关重要的是,该方法将图像处理时间缩短至约300µs,这使得GL‐IADS可以达到高达数百甚至KHz的超高分选吞吐量。GL - IADS将新型识别方法与可分离的声流体系统集成在一起,对单细胞、多细胞和负载细胞的液滴分别实现了97.9%、97.4%和99%的分选纯度,通量为43 Hz。GL - IADS为以前基于荧光的技术难以实现的许多生物学应用提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信