Temperature-insensitive and wide-range linear tactile electronic skins for reliable shape and texture recognition

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-08 DOI:10.1039/d5nr00660k
Longwei Xue, Li Yuan, Jixing Zhou, Junshuai Dai, Xudong Zhang, Hong Hu, Hai Liu, Tingting Zhao
{"title":"Temperature-insensitive and wide-range linear tactile electronic skins for reliable shape and texture recognition","authors":"Longwei Xue, Li Yuan, Jixing Zhou, Junshuai Dai, Xudong Zhang, Hong Hu, Hai Liu, Tingting Zhao","doi":"10.1039/d5nr00660k","DOIUrl":null,"url":null,"abstract":"Electronic skins, emulating the tactile functionality of the human skin, are crucial for robotic applications. The sensitivity and pressure-sensing range of current humanoid tactile sensors have performed significant advancements. However, the temperature susceptibility of conductive materials and the rapid saturation of conductive contact sites in soft polymeric materials bring about challenges for these sensors, including environmental interference and a narrow linear sensing range. These issues lead to the inconsistencies between the sensing signal and contact behavior, which eventually deteriorates both the accuracy and reliability. Here, we propose a flexible piezoresistive pressure sensor with minimized response to temperature variation but extended linear sensing range. The sensor utilizes a novel hybrid conductive material elaborated to exhibit zero temperature resistance coefficient by combining the materials with the opposite temperature coefficients, which allows for a reliable operation ranging from 20 to 70 ℃ with temperature variation induced fluctuation free. Additionally, the sensor provides a biomimetic polymer microstructure with multilevel cone-dome structural feature, which results in an ultra-wide linear pressure-sensing range from 0 up to 200 kPa. In addition, based on the simple and scalable fabrication process, a high-density sensor array (16×16) is produced to outline the spatial pressure distributions accurately even under the external temperature interferences and successfully discern the texture of the contact object.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00660k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic skins, emulating the tactile functionality of the human skin, are crucial for robotic applications. The sensitivity and pressure-sensing range of current humanoid tactile sensors have performed significant advancements. However, the temperature susceptibility of conductive materials and the rapid saturation of conductive contact sites in soft polymeric materials bring about challenges for these sensors, including environmental interference and a narrow linear sensing range. These issues lead to the inconsistencies between the sensing signal and contact behavior, which eventually deteriorates both the accuracy and reliability. Here, we propose a flexible piezoresistive pressure sensor with minimized response to temperature variation but extended linear sensing range. The sensor utilizes a novel hybrid conductive material elaborated to exhibit zero temperature resistance coefficient by combining the materials with the opposite temperature coefficients, which allows for a reliable operation ranging from 20 to 70 ℃ with temperature variation induced fluctuation free. Additionally, the sensor provides a biomimetic polymer microstructure with multilevel cone-dome structural feature, which results in an ultra-wide linear pressure-sensing range from 0 up to 200 kPa. In addition, based on the simple and scalable fabrication process, a high-density sensor array (16×16) is produced to outline the spatial pressure distributions accurately even under the external temperature interferences and successfully discern the texture of the contact object.
温度不敏感和宽范围线性触觉电子皮肤可靠的形状和纹理识别
电子皮肤,模仿人类皮肤的触觉功能,是机器人应用的关键。目前的类人触觉传感器的灵敏度和压力感应范围都取得了显著的进步。然而,导电材料的温度敏感性和软聚合物材料中导电接触位点的快速饱和给这些传感器带来了挑战,包括环境干扰和狭窄的线性传感范围。这些问题导致了传感信号与接触行为之间的不一致,最终降低了测量的精度和可靠性。在这里,我们提出了一种柔性压阻式压力传感器,它对温度变化的响应最小,但扩展了线性传感范围。该传感器采用了一种新型的混合导电材料,通过将材料与相反的温度系数结合,使其具有零温度电阻系数,从而允许在20至70℃范围内可靠地工作,温度变化不会引起波动。此外,该传感器具有仿生聚合物微观结构,具有多级锥形圆顶结构特征,可实现从0到200 kPa的超宽线性压力传感范围。此外,基于简单且可扩展的制造工艺,制作了高密度传感器阵列(16×16),即使在外部温度干扰下也能准确地勾勒出空间压力分布,并成功识别接触物体的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信