A Local–Global Graph KAN for Multi-Class Prediction of PPI

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Minghui Liu, Ying Qu
{"title":"A Local–Global Graph KAN for Multi-Class Prediction of PPI","authors":"Minghui Liu,&nbsp;Ying Qu","doi":"10.1002/eng2.70164","DOIUrl":null,"url":null,"abstract":"<p>Traditional experimental methods for identifying protein–protein interactions (PPI) are expensive and time-consuming. Therefore, using machine learning to treat multiple PPI predictions as binary classifications has become an alternative, but there is a problem of data imbalance. The proposed GLGKAN-PPI method integrates features from both global graphs and local subgraphs to capture the complex structural information of PPI networks comprehensively. Specifically, the method utilizes the pre-trained model MASSA to extract multimodal features of proteins. The global graph features are extracted using the GKAN (Graph Kolmogorov-Arnold Network) algorithm. Meanwhile, the local subgraph features are extracted using the MOE-GKAN (Mixture of Experts-Graph Kolmogorov-Arnold Network) algorithm. To mitigate data imbalance, an asymmetric loss function is utilized to better handle minority classes and improve overall prediction accuracy. Experimental results demonstrate that GLGKAN-PPI outperforms a range of existing intelligent approaches across multiple datasets and partitioning strategies.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional experimental methods for identifying protein–protein interactions (PPI) are expensive and time-consuming. Therefore, using machine learning to treat multiple PPI predictions as binary classifications has become an alternative, but there is a problem of data imbalance. The proposed GLGKAN-PPI method integrates features from both global graphs and local subgraphs to capture the complex structural information of PPI networks comprehensively. Specifically, the method utilizes the pre-trained model MASSA to extract multimodal features of proteins. The global graph features are extracted using the GKAN (Graph Kolmogorov-Arnold Network) algorithm. Meanwhile, the local subgraph features are extracted using the MOE-GKAN (Mixture of Experts-Graph Kolmogorov-Arnold Network) algorithm. To mitigate data imbalance, an asymmetric loss function is utilized to better handle minority classes and improve overall prediction accuracy. Experimental results demonstrate that GLGKAN-PPI outperforms a range of existing intelligent approaches across multiple datasets and partitioning strategies.

Abstract Image

多类PPI预测的局部-全局图KAN
传统的鉴定蛋白质-蛋白质相互作用(PPI)的实验方法既昂贵又耗时。因此,利用机器学习将多个PPI预测作为二分类来处理已经成为一种替代方案,但存在数据不平衡的问题。提出的GLGKAN-PPI方法综合了全局图和局部子图的特征,全面捕捉了PPI网络的复杂结构信息。具体而言,该方法利用预训练模型MASSA提取蛋白质的多模态特征。使用GKAN (graph Kolmogorov-Arnold Network)算法提取全局图特征。同时,采用MOE-GKAN (Mixture of Experts-Graph Kolmogorov-Arnold Network)算法提取局部子图特征。为了减轻数据不平衡,利用非对称损失函数更好地处理少数类,提高整体预测精度。实验结果表明,GLGKAN-PPI在多个数据集和分区策略上优于一系列现有的智能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信