Hybrid CNN–LSTM Model With Soft Attention Mechanism for Short-Term Load Forecasting in Smart Grid

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Syed Muhammad Hasanat, Muhammad Haris, Kaleem Ullah, Syed Zarak Shah, Usama Abid, Zahid Ullah
{"title":"Hybrid CNN–LSTM Model With Soft Attention Mechanism for Short-Term Load Forecasting in Smart Grid","authors":"Syed Muhammad Hasanat,&nbsp;Muhammad Haris,&nbsp;Kaleem Ullah,&nbsp;Syed Zarak Shah,&nbsp;Usama Abid,&nbsp;Zahid Ullah","doi":"10.1002/eng2.70163","DOIUrl":null,"url":null,"abstract":"<p>Integrating renewable energy in smart grids enables sustainable energy development but introduces challenges in supply–demand variability. Deep learning techniques are now imperative for Short-Term Load Forecasting (STLF), a significant enabler of energy flow management, demand-side flexibility, and grid stability. These methods optimize smart grid performance under variable conditions by leveraging the synergistic integration of multiple architectures. This paper proposes a novel hybrid CNN–LSTM parallel model with a soft attention mechanism to improve smart grids' STLF. The proposed model leverages Convolution Neural Networks (CNNs) to extract spatial patterns, LSTMs to capture temporal dependencies, and attention mechanisms to prioritize important information, enhancing predictive performance. A comprehensive comparative analysis uses two publicly available datasets, American Electric Power (AEP) and ISO New England (ISONE), to evaluate the proposed model's effectiveness. The proposed model provides outstanding performance across single-step and multistep forecasting operations by delivering the highest evaluation results. The proposed model delivered single-step forecasting results of 123.91 Root Mean Square Error (RMSE), 92.8 Mean Absolute Error (MAE), and 0.63 Mean Absolute Percentage Error (MAPE) on the AEP dataset and 126.16 RMSE, 64.28 MAE, and 0.44 MAPE on the ISONE dataset. The model delivered multistep forecasting results on AEP, which showed RMSE at 685.25, MAE of 490.37, and MAPE of 3.27, while ISONE produced RMSE of 598.26, MAE of 402.44, and MAPE of 2.73. The simulation results demonstrate that parallel CNN–LSTM with a soft attention mechanism effectively supports the development of adaptive and resilient smart grids, enabling better integration of renewable energy sources.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating renewable energy in smart grids enables sustainable energy development but introduces challenges in supply–demand variability. Deep learning techniques are now imperative for Short-Term Load Forecasting (STLF), a significant enabler of energy flow management, demand-side flexibility, and grid stability. These methods optimize smart grid performance under variable conditions by leveraging the synergistic integration of multiple architectures. This paper proposes a novel hybrid CNN–LSTM parallel model with a soft attention mechanism to improve smart grids' STLF. The proposed model leverages Convolution Neural Networks (CNNs) to extract spatial patterns, LSTMs to capture temporal dependencies, and attention mechanisms to prioritize important information, enhancing predictive performance. A comprehensive comparative analysis uses two publicly available datasets, American Electric Power (AEP) and ISO New England (ISONE), to evaluate the proposed model's effectiveness. The proposed model provides outstanding performance across single-step and multistep forecasting operations by delivering the highest evaluation results. The proposed model delivered single-step forecasting results of 123.91 Root Mean Square Error (RMSE), 92.8 Mean Absolute Error (MAE), and 0.63 Mean Absolute Percentage Error (MAPE) on the AEP dataset and 126.16 RMSE, 64.28 MAE, and 0.44 MAPE on the ISONE dataset. The model delivered multistep forecasting results on AEP, which showed RMSE at 685.25, MAE of 490.37, and MAPE of 3.27, while ISONE produced RMSE of 598.26, MAE of 402.44, and MAPE of 2.73. The simulation results demonstrate that parallel CNN–LSTM with a soft attention mechanism effectively supports the development of adaptive and resilient smart grids, enabling better integration of renewable energy sources.

Abstract Image

基于软注意机制的智能电网短期负荷预测CNN-LSTM混合模型
将可再生能源纳入智能电网能够实现可持续能源发展,但也带来了供需变化方面的挑战。深度学习技术现在对于短期负荷预测(STLF)是必不可少的,它是能量流管理、需求侧灵活性和电网稳定性的重要推动者。这些方法通过利用多种架构的协同集成来优化可变条件下的智能电网性能。为了提高智能电网的STLF,提出了一种新型的基于软注意机制的CNN-LSTM混合并行模型。该模型利用卷积神经网络(cnn)提取空间模式,LSTMs捕获时间依赖性,并利用注意力机制对重要信息进行优先级排序,从而提高预测性能。一项全面的比较分析使用了两个公开可用的数据集,美国电力公司(AEP)和ISO新英格兰公司(ISONE),来评估所提出模型的有效性。该模型通过提供最高的评价结果,在单步和多步预测操作中提供出色的性能。该模型在AEP数据集上的单步预测结果为123.91均方根误差(RMSE)、92.8平均绝对误差(MAE)和0.63平均绝对百分比误差(MAPE);在ISONE数据集上的单步预测结果为126.16 RMSE、64.28 MAE和0.44 MAPE。模型对AEP进行多步预测,RMSE为685.25,MAE为490.37,MAPE为3.27,ISONE模型的RMSE为598.26,MAE为402.44,MAPE为2.73。仿真结果表明,具有软关注机制的并行CNN-LSTM有效支持自适应和弹性智能电网的发展,能够更好地实现可再生能源的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信