Resolving Mesoscale Convective Systems: Grid Spacing Sensitivity in the Tropics and Midlatitudes

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Andreas F. Prein, Dié Wang, Ming Ge, Alexandra Ramos Valle, Manda B. Chasteen
{"title":"Resolving Mesoscale Convective Systems: Grid Spacing Sensitivity in the Tropics and Midlatitudes","authors":"Andreas F. Prein,&nbsp;Dié Wang,&nbsp;Ming Ge,&nbsp;Alexandra Ramos Valle,&nbsp;Manda B. Chasteen","doi":"10.1029/2024JD042530","DOIUrl":null,"url":null,"abstract":"<p>Mesoscale convective systems (MCSs) are a critical global water cycle component and drive extreme precipitation events in tropical and midlatitude regions. However, simulating deep convection remains challenging for modern numerical weather and climate models due to the complex interactions of processes from microscales to synoptic scales. Recent models with kilometer-scale horizontal grid spacings <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $({\\Delta }x)$</annotation>\n </semantics></math> offer notable improvements in simulating deep convection compared to coarser-resolution models. Still, deficiencies in representing key physical processes, such as entrainment, lead to systematic biases. Additionally, evaluating model outputs using process-oriented observational data remain difficult. This study presents an ensemble of MCS simulations with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <annotation> ${\\Delta }x$</annotation>\n </semantics></math> spanning the deep convective gray zone (<span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <annotation> ${\\Delta }x$</annotation>\n </semantics></math> from 12 km to 125 m) in the Southern Great Plains of the U.S. and the Amazon Basin. Comparing these simulations with Atmospheric Radiation Measurement (ARM) wind profiler observations, we find greater <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <annotation> ${\\Delta }x$</annotation>\n </semantics></math> sensitivity in the Amazon Basin compared to the Great Plains. Convective drafts converge structurally at sub-kilometer scales, but some deficiencies remain. In both regions, simulated up and downdrafts are too deep and extreme downdrafts are not strong enough. Furthermore, Amazonian updrafts are too strong. Overall, we observe higher <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <annotation> ${\\Delta }x$</annotation>\n </semantics></math> sensitivity in the tropics, including an artificial buildup in vertical kinetic energy at scales of <span></span><math>\n <semantics>\n <mrow>\n <mn>5</mn>\n <mi>Δ</mi>\n <mi>x</mi>\n </mrow>\n <annotation> $5{\\Delta }x$</annotation>\n </semantics></math>, suggesting a need for <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n <mo>≤</mo>\n </mrow>\n <annotation> ${\\Delta }x\\le $</annotation>\n </semantics></math> 250 m in this region. Nevertheless, bulk convergence—agreement of storm-average statistics—is achievable with kilometer-scale simulations within a <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math>10% error margin with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>x</mi>\n <mo>=</mo>\n </mrow>\n <annotation> ${\\Delta }x=$</annotation>\n </semantics></math> 1 km providing a good balance between accuracy and computational cost.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042530","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mesoscale convective systems (MCSs) are a critical global water cycle component and drive extreme precipitation events in tropical and midlatitude regions. However, simulating deep convection remains challenging for modern numerical weather and climate models due to the complex interactions of processes from microscales to synoptic scales. Recent models with kilometer-scale horizontal grid spacings ( Δ x ) $({\Delta }x)$ offer notable improvements in simulating deep convection compared to coarser-resolution models. Still, deficiencies in representing key physical processes, such as entrainment, lead to systematic biases. Additionally, evaluating model outputs using process-oriented observational data remain difficult. This study presents an ensemble of MCS simulations with Δ x ${\Delta }x$ spanning the deep convective gray zone ( Δ x ${\Delta }x$ from 12 km to 125 m) in the Southern Great Plains of the U.S. and the Amazon Basin. Comparing these simulations with Atmospheric Radiation Measurement (ARM) wind profiler observations, we find greater Δ x ${\Delta }x$ sensitivity in the Amazon Basin compared to the Great Plains. Convective drafts converge structurally at sub-kilometer scales, but some deficiencies remain. In both regions, simulated up and downdrafts are too deep and extreme downdrafts are not strong enough. Furthermore, Amazonian updrafts are too strong. Overall, we observe higher Δ x ${\Delta }x$ sensitivity in the tropics, including an artificial buildup in vertical kinetic energy at scales of 5 Δ x $5{\Delta }x$ , suggesting a need for Δ x ${\Delta }x\le $ 250 m in this region. Nevertheless, bulk convergence—agreement of storm-average statistics—is achievable with kilometer-scale simulations within a ± $\pm $ 10% error margin with Δ x = ${\Delta }x=$ 1 km providing a good balance between accuracy and computational cost.

Abstract Image

解析中尺度对流系统:热带和中纬度地区网格间距的敏感性
中尺度对流系统(MCSs)是全球水循环的重要组成部分,是热带和中纬度地区极端降水事件的驱动因素。然而,由于从微观尺度到天气尺度过程的复杂相互作用,对现代数值天气和气候模式来说,模拟深层对流仍然具有挑战性。最近的千米尺度水平网格间隔模型(Δ x) $({\Delta }x)$与粗分辨率模型相比,在模拟深层对流方面有显著改进。然而,在表现关键物理过程(如夹带)方面的缺陷会导致系统性偏见。此外,利用面向过程的观测数据评估模式输出仍然很困难。本研究展示了在美国南部大平原和亚马逊盆地中横跨深层对流灰色地带(Δ x ${\Delta }x$从12 km到125 m)的Δ x ${\Delta }x$ MCS模拟集合。将这些模拟与大气辐射测量(ARM)风廓线观测结果进行比较,我们发现亚马逊盆地比大平原更具有Δ x ${\Delta }x$敏感性。对流气流在亚公里尺度上的结构辐合,但仍存在一些不足。在这两个地区,模拟的上升和下降气流都太深,极端下降气流不够强。此外,亚马逊的上升气流太强。总的来说,我们观察到热带地区更高的Δ x ${\Delta }x$敏感性,包括5 Δ x $5{\Delta }x$尺度上垂直动能的人为积累,建议该地区需要Δ x≤${\Delta }x\le $ 250 m。尽管如此,在±$\pm $ 10的范围内,通过千米尺度的模拟可以实现大规模的收敛——与风暴平均统计数据一致% error margin with Δ x = ${\Delta }x=$ 1 km providing a good balance between accuracy and computational cost.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信