Anna Weglage, Natalie Layer, Jan-Ole Radecke, Hartmut Meister, Verena Müller, Ruth Lang-Roth, Martin Walger, Pascale Sandmann
{"title":"Reduced Visual-Cortex Reorganization Before and After Cochlear Implantation Relates to Better Speech Recognition Ability","authors":"Anna Weglage, Natalie Layer, Jan-Ole Radecke, Hartmut Meister, Verena Müller, Ruth Lang-Roth, Martin Walger, Pascale Sandmann","doi":"10.1002/jnr.70042","DOIUrl":null,"url":null,"abstract":"<p>Although a cochlear implant (CI) can partially restore auditory function, CI recipients show alterations not only in auditory but also in visual cortical processing. Yet, it is not well understood how these visual changes relate to the CI outcome and to what extent these changes are induced by auditory deprivation and the limited CI input, respectively. Here, we present a prospective longitudinal electroencephalography study which examined the deprivation- and CI-induced alterations on cortical face processing by comparing visual evoked potentials (VEP) in CI users before and 6 months after implantation. A group of normal-hearing (NH) listeners served as a control. The participants performed a word-identification task and a face-categorization task to study the cortical processing of static and articulating faces in attended and unattended conditions. The CI candidates and CI users showed a reduced visual-cortex activation, a stronger functional connectivity between the visual and auditory cortex, and a reduced attention effect in the (extended) alpha frequency range (8–18 Hz) when compared to NH listeners. There was a positive correlation between the P1 VEP amplitude recorded before implantation and the speech recognition ability after implantation. Our results suggest that the CI users' alterations in cortical face processing are mainly induced by auditory deprivation and not by CI experience. Importantly, these deprivation-induced changes seem to be related to the CI outcome. Our results suggest that the visual P1 amplitude as recorded <i>before</i> implantation provides an objective index of cortical visual reorganization that may help predict the CI outcome.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70042","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although a cochlear implant (CI) can partially restore auditory function, CI recipients show alterations not only in auditory but also in visual cortical processing. Yet, it is not well understood how these visual changes relate to the CI outcome and to what extent these changes are induced by auditory deprivation and the limited CI input, respectively. Here, we present a prospective longitudinal electroencephalography study which examined the deprivation- and CI-induced alterations on cortical face processing by comparing visual evoked potentials (VEP) in CI users before and 6 months after implantation. A group of normal-hearing (NH) listeners served as a control. The participants performed a word-identification task and a face-categorization task to study the cortical processing of static and articulating faces in attended and unattended conditions. The CI candidates and CI users showed a reduced visual-cortex activation, a stronger functional connectivity between the visual and auditory cortex, and a reduced attention effect in the (extended) alpha frequency range (8–18 Hz) when compared to NH listeners. There was a positive correlation between the P1 VEP amplitude recorded before implantation and the speech recognition ability after implantation. Our results suggest that the CI users' alterations in cortical face processing are mainly induced by auditory deprivation and not by CI experience. Importantly, these deprivation-induced changes seem to be related to the CI outcome. Our results suggest that the visual P1 amplitude as recorded before implantation provides an objective index of cortical visual reorganization that may help predict the CI outcome.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.