Separation of the Initial Conditions in the Inverse Problem for One-Dimensional Nonlinear Tsunami Wave Run-Up Theory

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Alexei Rybkin, Oleksandr Bobrovnikov, Noah Palmer, Daniel Abramowicz, Efim Pelinovsky
{"title":"Separation of the Initial Conditions in the Inverse Problem for One-Dimensional Nonlinear Tsunami Wave Run-Up Theory","authors":"Alexei Rybkin,&nbsp;Oleksandr Bobrovnikov,&nbsp;Noah Palmer,&nbsp;Daniel Abramowicz,&nbsp;Efim Pelinovsky","doi":"10.1111/sapm.70054","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We investigate the inverse tsunami wave problem within the framework of the one-dimensional (1D) nonlinear shallow water equations (SWE). Specifically, we show that the initial displacement <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>η</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\eta _0(x)$</annotation>\n </semantics></math> and velocity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u_0(x)$</annotation>\n </semantics></math> of the wave can be recovered, given the known motion of the shoreline <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$R(t)$</annotation>\n </semantics></math> (the wet/dry free boundary), in terms of the Abel transform. We demonstrate that for power-shaped inclined bathymetries, this problem admits a complete solution for any <span></span><math>\n <semantics>\n <msub>\n <mi>η</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\eta _0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <annotation>$u_0$</annotation>\n </semantics></math>, provided the wave does not break.</p>\n <p>It is important to note that, in contrast to the direct problem (also known as the tsunami wave run-up problem), where <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$R(t)$</annotation>\n </semantics></math> can be computed exactly only for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u_0(x)=0$</annotation>\n </semantics></math>, our algorithm can recover <span></span><math>\n <semantics>\n <msub>\n <mi>η</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\eta _0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <annotation>$u_0$</annotation>\n </semantics></math> exactly for any non-zero <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <annotation>$u_0$</annotation>\n </semantics></math>. This highlights an interesting asymmetry between the direct and inverse problems. Our results extend the work presented earlier, where the inverse problem was solved for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u_0(x)=0$</annotation>\n </semantics></math>. As in previous work, our approach utilizes the Carrier–Greenspan transformation, which linearizes the SWE for inclined bathymetries. Extensive numerical experiments confirm the efficiency of our algorithms.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the inverse tsunami wave problem within the framework of the one-dimensional (1D) nonlinear shallow water equations (SWE). Specifically, we show that the initial displacement η 0 ( x ) $\eta _0(x)$ and velocity u 0 ( x ) $u_0(x)$ of the wave can be recovered, given the known motion of the shoreline R ( t ) $R(t)$ (the wet/dry free boundary), in terms of the Abel transform. We demonstrate that for power-shaped inclined bathymetries, this problem admits a complete solution for any η 0 $\eta _0$ and u 0 $u_0$ , provided the wave does not break.

It is important to note that, in contrast to the direct problem (also known as the tsunami wave run-up problem), where R ( t ) $R(t)$ can be computed exactly only for u 0 ( x ) = 0 $u_0(x)=0$ , our algorithm can recover η 0 $\eta _0$ and u 0 $u_0$ exactly for any non-zero u 0 $u_0$ . This highlights an interesting asymmetry between the direct and inverse problems. Our results extend the work presented earlier, where the inverse problem was solved for u 0 ( x ) = 0 $u_0(x)=0$ . As in previous work, our approach utilizes the Carrier–Greenspan transformation, which linearizes the SWE for inclined bathymetries. Extensive numerical experiments confirm the efficiency of our algorithms.

一维非线性海啸涨落理论反问题初始条件的分离
本文在一维非线性浅水方程(SWE)框架下研究了海啸反波问题。具体地说,我们证明了初始位移η 0(x)$ \eta _0(x)$和速度u 0(x)$给定已知的海岸线R(t)$ R(t)$(干湿自由边界)的运动,用Abel变换可以恢复波浪的$u_0(x)$。我们证明了对于幂形倾斜水深,这个问题对于任意η 0$ \eta _0$和u 0$ u_0$有完全解,只要波浪不破裂。值得注意的是,与直接问题(也称为海啸波上升问题)相反,其中R(t)$ R(t)$只能在u 0(x)=0$ u_0(x)=0$时精确计算,对于任意非零的u 0$ u_0$,我们的算法可以精确地恢复η 0$ \eta _0$和u 0$ u_0$。这突出了正问题和逆问题之间有趣的不对称性。我们的结果扩展了前面的工作,其中解出了u 0(x)=0$ u_0(x)=0$的逆问题。与之前的工作一样,我们的方法利用了Carrier-Greenspan变换,该变换将倾斜水深的SWE线性化。大量的数值实验证实了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信