{"title":"Preparation, Physicochemical Characterization, and In Vitro and In Vivo Osteogenic Evaluation of Reinforced PLLA-PLCL/HA Resorbable Membranes","authors":"Zheng Fu, Jing Wang, Yuhan Wu, Wenyi Zeng, Chenguang Zhang, Yang Sun, Xiaoshan Fan, Yucheng Huang, Feilong Deng, Jiayun Xu","doi":"10.1002/jbm.a.37925","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study aimed to develop reinforced poly(L-lactide)-poly(L-lactide-co-ε-caprolactone)/hydroxyapatite (PLLA-PLCL/HA) resorbable membranes for guided bone regeneration (GBR), focusing on optimizing the degradation rate by adjusting PLLA molecular weight. We aimed to achieve a balance between mechanical strength and bioactivity to enhance the efficacy of bone regeneration. PLLA-PLCL/HA membranes with varying degradation rates were fabricated by modifying the molecular weight of PLLA. The membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), andx-ray diffraction (XRD). Mechanical properties were evaluated using three-point bending tests, and in vitro cytocompatibility was assessed through MC3T3-E1 cell adhesion and proliferation. For in vivo experiments, a cranial defect mouse model was used to investigate degradation and osteogenic potential, and bone regeneration was evaluated using micro-CT, histological staining, and immunohistochemistry. The reinforced membranes exhibited superior bending strength compared to collagen membranes. The in vitro studies confirmed excellent cytocompatibility, and in vivo results showed that membranes with slower early stage degradation promoted bone regeneration, emphasizing the importance of degradation control in GBR membranes. The optimized PLLA-PLCL/HA membranes, which combine enhanced mechanical properties and controlled biodegradability, are promising candidates for clinical GBR applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37925","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop reinforced poly(L-lactide)-poly(L-lactide-co-ε-caprolactone)/hydroxyapatite (PLLA-PLCL/HA) resorbable membranes for guided bone regeneration (GBR), focusing on optimizing the degradation rate by adjusting PLLA molecular weight. We aimed to achieve a balance between mechanical strength and bioactivity to enhance the efficacy of bone regeneration. PLLA-PLCL/HA membranes with varying degradation rates were fabricated by modifying the molecular weight of PLLA. The membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), andx-ray diffraction (XRD). Mechanical properties were evaluated using three-point bending tests, and in vitro cytocompatibility was assessed through MC3T3-E1 cell adhesion and proliferation. For in vivo experiments, a cranial defect mouse model was used to investigate degradation and osteogenic potential, and bone regeneration was evaluated using micro-CT, histological staining, and immunohistochemistry. The reinforced membranes exhibited superior bending strength compared to collagen membranes. The in vitro studies confirmed excellent cytocompatibility, and in vivo results showed that membranes with slower early stage degradation promoted bone regeneration, emphasizing the importance of degradation control in GBR membranes. The optimized PLLA-PLCL/HA membranes, which combine enhanced mechanical properties and controlled biodegradability, are promising candidates for clinical GBR applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.