Vascular Endothelial Growth Factor-Mimetic Peptide and Mitochondria-Targeted Antioxidant-Loaded Hydrogel System Improves Repair of Myocardial Infarction in Mice

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Qingling Xu, Xinhui Chen, Shuwei Sun, Chunyige Zhao, Linxin Shi, Han Cheng, Ying Liu, Chunying Shi, Xiang Ao
{"title":"Vascular Endothelial Growth Factor-Mimetic Peptide and Mitochondria-Targeted Antioxidant-Loaded Hydrogel System Improves Repair of Myocardial Infarction in Mice","authors":"Qingling Xu,&nbsp;Xinhui Chen,&nbsp;Shuwei Sun,&nbsp;Chunyige Zhao,&nbsp;Linxin Shi,&nbsp;Han Cheng,&nbsp;Ying Liu,&nbsp;Chunying Shi,&nbsp;Xiang Ao","doi":"10.1002/jbm.a.37924","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Myocardial infarction (MI) is a pathological state characterized by persistent ischemia of the heart. Following MI, the structural and functional remodeling of the myocardium and vasculature involves oxidative stress and mitochondrial dysfunction, which exacerbate myocardial injury. Currently, there are limited effective treatments available to alleviate MI-induced damage. Vascular endothelial growth factor-mimetic (QK) peptides and mitochondria-targeted Szeto–Schiller (SS31) peptides have been extensively investigated for their therapeutic potential in various ischemic cardiomyopathies. However, traditional topical agents used in myocardial ischemia treatment suffer from limitations such as transient retention or undesirable diffusion of the drug. Consequently, a controlled drug delivery system capable of delivering QK and SS31 has gained significant attention for repair. In this study, we constructed self-assembled nanofibrous hydrogels incorporating QK and SS31 with customizable peptide amphiphilic (PA) molecules, resulting in PA1-QK and PA2-SS31 formulations. In vitro experiments demonstrated that both QK and SS31 effectively inhibited mitochondrial damage and apoptosis in a cellular hypoxia/reoxygenation (H/R) model. In vivo studies using a mouse MI model revealed that PA1-QK and PA2-SS31 significantly promoted vascular regeneration, attenuated mitochondrial dysfunction and apoptosis, and facilitated the recovery of cardiac structure and function. These results suggest that PA1-QK and PA2-SS31-loaded self-assembled nanofiber hydrogels represent an effective drug delivery system for promoting regenerative repair of myocardium and blood vessels following MI.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37924","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction (MI) is a pathological state characterized by persistent ischemia of the heart. Following MI, the structural and functional remodeling of the myocardium and vasculature involves oxidative stress and mitochondrial dysfunction, which exacerbate myocardial injury. Currently, there are limited effective treatments available to alleviate MI-induced damage. Vascular endothelial growth factor-mimetic (QK) peptides and mitochondria-targeted Szeto–Schiller (SS31) peptides have been extensively investigated for their therapeutic potential in various ischemic cardiomyopathies. However, traditional topical agents used in myocardial ischemia treatment suffer from limitations such as transient retention or undesirable diffusion of the drug. Consequently, a controlled drug delivery system capable of delivering QK and SS31 has gained significant attention for repair. In this study, we constructed self-assembled nanofibrous hydrogels incorporating QK and SS31 with customizable peptide amphiphilic (PA) molecules, resulting in PA1-QK and PA2-SS31 formulations. In vitro experiments demonstrated that both QK and SS31 effectively inhibited mitochondrial damage and apoptosis in a cellular hypoxia/reoxygenation (H/R) model. In vivo studies using a mouse MI model revealed that PA1-QK and PA2-SS31 significantly promoted vascular regeneration, attenuated mitochondrial dysfunction and apoptosis, and facilitated the recovery of cardiac structure and function. These results suggest that PA1-QK and PA2-SS31-loaded self-assembled nanofiber hydrogels represent an effective drug delivery system for promoting regenerative repair of myocardium and blood vessels following MI.

血管内皮生长因子-模拟肽和线粒体靶向抗氧化剂负载水凝胶系统促进小鼠心肌梗死的修复
心肌梗死(MI)是一种以心脏持续缺血为特征的病理状态。心肌梗死后,心肌和血管的结构和功能重构涉及氧化应激和线粒体功能障碍,从而加剧心肌损伤。目前,用于减轻mi引起的损伤的有效治疗方法有限。血管内皮生长因子-模拟(QK)肽和线粒体靶向的Szeto-Schiller (SS31)肽在各种缺血性心肌病中的治疗潜力已被广泛研究。然而,用于心肌缺血治疗的传统局部药物存在局限性,如短暂滞留或药物的不良扩散。因此,一种能够递送QK和SS31的受控药物递送系统在修复方面得到了极大的关注。在这项研究中,我们构建了自组装的纳米纤维水凝胶,将QK和SS31与可定制的肽两亲性(PA)分子结合在一起,得到了PA1-QK和PA2-SS31配方。体外实验表明,QK和SS31均能有效抑制细胞缺氧/再氧化(H/R)模型中线粒体损伤和凋亡。小鼠心肌梗死模型的体内研究表明,PA1-QK和PA2-SS31可显著促进血管再生,减轻线粒体功能障碍和细胞凋亡,促进心脏结构和功能的恢复。这些结果表明,PA1-QK和pa2 - ss31负载的自组装纳米纤维水凝胶是一种有效的药物递送系统,可促进心肌和血管的再生修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信