Shahriar Jahani, Yousef Kazemzadeh, Reza Azin, Mohammad Rasool Dehghani
{"title":"Simultaneous use of disulphide oil for chemical-enhanced oil recovery by emulsion formation and stability with asphaltene deposition control","authors":"Shahriar Jahani, Yousef Kazemzadeh, Reza Azin, Mohammad Rasool Dehghani","doi":"10.1002/cjce.25534","DOIUrl":null,"url":null,"abstract":"<p>Disulphide oil (DSO) is a by-product of oil and gas refining processes that is generated during the removal of mercaptans and the sweetening of light hydrocarbons. Asphalt deposition, especially asphaltene deposition during enhanced oil recovery methods, reduces oil recovery from the reservoir, so the use of a substance such as DSO, which has the ability to control and reduce asphaltene deposition, can be effective in increasing oil recovery from the reservoir. In this research, a micromodel with a fracture design and a matrix that represents fracture reservoirs was utilized. These tests were conducted in two groups. The first group of tests is related to adding DSO to crude oil and using 70 to 30 vol.% oil–water emulsion containing salt, surfactant, and nanoparticles. The second group involved adding DSO to both crude oil and emulsion. The first group aimed at stimulation and the second group aimed at chemical enhanced oil recovery (C-EOR). The formation and stability of water-in-oil emulsion was done by analyzing the average droplet size. As a result, in the first group of tests with the presence of DSO in the oil, by measuring the average diameter before and after injection of AOS surfactant, it was observed that the average droplet size decreased from 6.89 to 4.01 μm, which indicates an increase in the emulsion stability. In the second group, where DSO was present in both oil and water emulsion in injected oil, it can be seen that the average diameter of the droplets in the surfactant decreased from 5.12 to 3.21 μm.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 6","pages":"2624-2641"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25534","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Disulphide oil (DSO) is a by-product of oil and gas refining processes that is generated during the removal of mercaptans and the sweetening of light hydrocarbons. Asphalt deposition, especially asphaltene deposition during enhanced oil recovery methods, reduces oil recovery from the reservoir, so the use of a substance such as DSO, which has the ability to control and reduce asphaltene deposition, can be effective in increasing oil recovery from the reservoir. In this research, a micromodel with a fracture design and a matrix that represents fracture reservoirs was utilized. These tests were conducted in two groups. The first group of tests is related to adding DSO to crude oil and using 70 to 30 vol.% oil–water emulsion containing salt, surfactant, and nanoparticles. The second group involved adding DSO to both crude oil and emulsion. The first group aimed at stimulation and the second group aimed at chemical enhanced oil recovery (C-EOR). The formation and stability of water-in-oil emulsion was done by analyzing the average droplet size. As a result, in the first group of tests with the presence of DSO in the oil, by measuring the average diameter before and after injection of AOS surfactant, it was observed that the average droplet size decreased from 6.89 to 4.01 μm, which indicates an increase in the emulsion stability. In the second group, where DSO was present in both oil and water emulsion in injected oil, it can be seen that the average diameter of the droplets in the surfactant decreased from 5.12 to 3.21 μm.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.