{"title":"Experimental study on heat transfer and resistance of round tube with tube sheet under ultrasonic action","authors":"Xiaohan Lv, Chulin Yu, Wenqing Wang, Yuxi Yang, Haiqing Zhang","doi":"10.1002/cjce.25536","DOIUrl":null,"url":null,"abstract":"<p>Energy is vital to the survival and development of human beings. In the era of ‘carbon neutrality’, all walks of life around the world are upgrading their technological capabilities to reduce carbon emissions. As a new type of active strengthening technology to improve the comprehensive performance of heat exchangers, ultrasonic technology has attracted the attention of more and more scholars. From the actual installation situation, a set of ultrasonic enhanced heat transfer test device with tube sheet round tube was built. After experimental research and data analysis, the influence of ultrasonic sound intensity, frequency, and position on heat transfer, flow resistance, and comprehensive performance of heat exchange tube under different working conditions and without ultrasonic wave is studied. The results show that the ultrasonic enhanced heat transfer and drag reduction capacity increases with the decrease of ultrasonic frequency, and under the action of ultrasonic waves of different frequencies, the critical sound intensity of its enhanced heat transfer and drag reduction performance is different. The drag reduction performance of the ultrasonic heat exchange tube is increased by 18.41%, the heat transfer performance is increased by 36.53%, and the overall performance is increased by 20.57%.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 6","pages":"2672-2687"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Energy is vital to the survival and development of human beings. In the era of ‘carbon neutrality’, all walks of life around the world are upgrading their technological capabilities to reduce carbon emissions. As a new type of active strengthening technology to improve the comprehensive performance of heat exchangers, ultrasonic technology has attracted the attention of more and more scholars. From the actual installation situation, a set of ultrasonic enhanced heat transfer test device with tube sheet round tube was built. After experimental research and data analysis, the influence of ultrasonic sound intensity, frequency, and position on heat transfer, flow resistance, and comprehensive performance of heat exchange tube under different working conditions and without ultrasonic wave is studied. The results show that the ultrasonic enhanced heat transfer and drag reduction capacity increases with the decrease of ultrasonic frequency, and under the action of ultrasonic waves of different frequencies, the critical sound intensity of its enhanced heat transfer and drag reduction performance is different. The drag reduction performance of the ultrasonic heat exchange tube is increased by 18.41%, the heat transfer performance is increased by 36.53%, and the overall performance is increased by 20.57%.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.