{"title":"Heterotic string field theory with manifest spacetime supersymmetry","authors":"Nathan Berkovits, Ulisses M. Portugal","doi":"10.1007/JHEP05(2025)050","DOIUrl":null,"url":null,"abstract":"<p>Using the hybrid formalism with manifest <i>N</i> = 1 <i>d</i> = 4 spacetime supersymmetry, we construct the quadratic term in the heterotic superstring field theory action. As in open superstring field theory using the hybrid formalism, the heterotic string field theory action is constructed with three string fields and the massless sector describes <i>N</i> = 1 <i>d</i> = 10 supergravity in terms of <i>N</i> = 1 <i>d</i> = 4 superfields.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)050.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)050","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Using the hybrid formalism with manifest N = 1 d = 4 spacetime supersymmetry, we construct the quadratic term in the heterotic superstring field theory action. As in open superstring field theory using the hybrid formalism, the heterotic string field theory action is constructed with three string fields and the massless sector describes N = 1 d = 10 supergravity in terms of N = 1 d = 4 superfields.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).