{"title":"Cold Spray Additive Manufacturing: A Review of Shape Control Challenges and Solutions","authors":"Roberta Falco, Sara Bagherifard","doi":"10.1007/s11666-025-01970-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cold spray (CS) is a promising solid-state deposition method that offers several advantages over traditional thermal spray techniques. With rapid deposition, minimal thermal degradation and distortion, and unique flexibility in material selection and part size, it is an attractive option for additive manufacturing. Despite the latest steep technological advancements, a significant hindrance to the wide application of CS in this field is shape accuracy. The Gaussian-like deposit profiles characteristic of CS limit its resolution, causing waviness along the deposit, tapering, and edge losses, making shape control a difficult task. Deposit shape modeling can play a major role in addressing this challenge and counterbalancing the restrictive resolution issues by predicting the deposit shape, as a function of kinetic process parameters. Macroscale deposition modeling can furthermore boost automated process planning for high geometrical control. This paper depicts the current scenario and ongoing attempts to characterize and predict CS deposit shape. It categorizes CS shape prediction models into Gaussian-fit, physics-based, and data-driven. Through the critical evaluation of such models, research gaps and potential areas of improvement are identified, particularly in simultaneously achieving high prediction accuracy and computational efficiency, rather than framing them as competing objectives. Alternative recently developed strategies for geometrical control are furthermore explored, including advanced trajectory planning techniques, tailored to CS.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1023 - 1041"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01970-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01970-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cold spray (CS) is a promising solid-state deposition method that offers several advantages over traditional thermal spray techniques. With rapid deposition, minimal thermal degradation and distortion, and unique flexibility in material selection and part size, it is an attractive option for additive manufacturing. Despite the latest steep technological advancements, a significant hindrance to the wide application of CS in this field is shape accuracy. The Gaussian-like deposit profiles characteristic of CS limit its resolution, causing waviness along the deposit, tapering, and edge losses, making shape control a difficult task. Deposit shape modeling can play a major role in addressing this challenge and counterbalancing the restrictive resolution issues by predicting the deposit shape, as a function of kinetic process parameters. Macroscale deposition modeling can furthermore boost automated process planning for high geometrical control. This paper depicts the current scenario and ongoing attempts to characterize and predict CS deposit shape. It categorizes CS shape prediction models into Gaussian-fit, physics-based, and data-driven. Through the critical evaluation of such models, research gaps and potential areas of improvement are identified, particularly in simultaneously achieving high prediction accuracy and computational efficiency, rather than framing them as competing objectives. Alternative recently developed strategies for geometrical control are furthermore explored, including advanced trajectory planning techniques, tailored to CS.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.