Enhanced paraben removal through synergistic catalytic ozonation and adsorption processes using Fe3O4-GAC magnetic composite

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Bahareh Ahmadi, Abooalfazl Azhdarpoor, Mohammad Hoseini
{"title":"Enhanced paraben removal through synergistic catalytic ozonation and adsorption processes using Fe3O4-GAC magnetic composite","authors":"Bahareh Ahmadi,&nbsp;Abooalfazl Azhdarpoor,&nbsp;Mohammad Hoseini","doi":"10.1007/s13201-025-02475-5","DOIUrl":null,"url":null,"abstract":"<div><p>The potential long-term deleterious effects of parabens on ecosystems, particularly as endocrine disruptors, have been a source of concern due to their persistent presence in natural waters. This study evaluated the catalytic performance of Fe<sub>3</sub>O<sub>4</sub>-enhanced granular activated carbon (Fe<sub>3</sub>O<sub>4</sub>-GAC) in the catalytic ozonation of methyl-paraben (MP) and ethyl-paraben (EP). Characterization confirmed that Fe<sub>3</sub>O<sub>4</sub> nanoparticle improved GAC’s surface properties, enhancing reaction efficiency. Under optimized conditions (1.5 g/L GAC, pH 3, 20 mg/L parabens, 45 min), the adsorption process achieved removal efficiencies of 70% for MP and 65% for EP. Fe<sub>3</sub>O<sub>4</sub>-GAC outperformed ozonation and catalytic ozonation with GAC, removing 98% of MP and 95% of EP at pH 9, 1 g/L catalyst, and 5 min of reaction time. Adsorption kinetics followed the <i>pseudo</i>-first-order kinetic model with higher determination coefficients (R<sup>2</sup>: 0.9369 for MP, 0.9164 for EP) than the <i>pseudo</i>-second-order model, while the Langmuir isotherm best described the process (R<sup>2</sup>: 0.9782 for MP, 0.9933 for EP). Degradation in catalytic ozonation using Fe<sub>3</sub>O<sub>4</sub>-GAC also followed the <i>pseudo</i>-first-order kinetic model, achieving rate constants of 0.4437 min⁻<sup>1</sup> for MP and 0.3076 min⁻<sup>1</sup> for EP. Moreover, the catalyst demonstrated excellent reusability, maintaining high performance after five successive cycles. These findings underline the potential of Fe<sub>3</sub>O<sub>4</sub>-GAC as a sustainable and efficient catalyst for removing parabens from water, addressing an urgent environmental challenge.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02475-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02475-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The potential long-term deleterious effects of parabens on ecosystems, particularly as endocrine disruptors, have been a source of concern due to their persistent presence in natural waters. This study evaluated the catalytic performance of Fe3O4-enhanced granular activated carbon (Fe3O4-GAC) in the catalytic ozonation of methyl-paraben (MP) and ethyl-paraben (EP). Characterization confirmed that Fe3O4 nanoparticle improved GAC’s surface properties, enhancing reaction efficiency. Under optimized conditions (1.5 g/L GAC, pH 3, 20 mg/L parabens, 45 min), the adsorption process achieved removal efficiencies of 70% for MP and 65% for EP. Fe3O4-GAC outperformed ozonation and catalytic ozonation with GAC, removing 98% of MP and 95% of EP at pH 9, 1 g/L catalyst, and 5 min of reaction time. Adsorption kinetics followed the pseudo-first-order kinetic model with higher determination coefficients (R2: 0.9369 for MP, 0.9164 for EP) than the pseudo-second-order model, while the Langmuir isotherm best described the process (R2: 0.9782 for MP, 0.9933 for EP). Degradation in catalytic ozonation using Fe3O4-GAC also followed the pseudo-first-order kinetic model, achieving rate constants of 0.4437 min⁻1 for MP and 0.3076 min⁻1 for EP. Moreover, the catalyst demonstrated excellent reusability, maintaining high performance after five successive cycles. These findings underline the potential of Fe3O4-GAC as a sustainable and efficient catalyst for removing parabens from water, addressing an urgent environmental challenge.

Fe3O4-GAC磁性复合材料协同催化臭氧氧化和吸附过程增强对羟基苯甲酸酯的去除
对羟基苯甲酸酯对生态系统的潜在长期有害影响,特别是作为内分泌干扰物,一直是令人担忧的,因为它们在自然水域中持续存在。本研究考察了fe3o4增强颗粒活性炭(Fe3O4-GAC)在对羟基苯甲酸甲酯(MP)和对羟基苯甲酸乙酯(EP)的催化臭氧化中的催化性能。表征证实纳米Fe3O4颗粒改善了GAC的表面性能,提高了反应效率。在优化条件(GAC 1.5 g/L, pH 3,对羟基苯甲酸酯20 mg/L, 45 min)下,MP的去除率为70%,EP的去除率为65%。Fe3O4-GAC在pH为9、催化剂浓度为1 g/L、反应时间为5 min的条件下,对MP的去除率为98%,EP的去除率为95%,优于GAC的臭氧氧化和催化臭氧氧化。吸附动力学符合拟一级动力学模型,其决定系数(R2: 0.9369)高于拟二级动力学模型(R2: 0.9369, EP为0.9164),而Langmuir等温线最能描述吸附过程(R2: 0.9782, EP为0.9933)。Fe3O4-GAC在臭氧催化氧化中的降解也遵循准一级动力学模型,其速率常数为0.4437 min(毒血症)和0.3076 min(毒血症)。此外,该催化剂表现出优异的可重复使用性,在连续五次循环后仍保持高性能。这些发现强调了Fe3O4-GAC作为一种可持续和高效的催化剂从水中去除对羟基苯甲酸酯的潜力,解决了紧迫的环境挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信