Therapeutic peptides: chemical strategies fortify peptides for enhanced disease treatment efficacy

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qingmei Li, Wen Chao, Lijuan Qiu
{"title":"Therapeutic peptides: chemical strategies fortify peptides for enhanced disease treatment efficacy","authors":"Qingmei Li,&nbsp;Wen Chao,&nbsp;Lijuan Qiu","doi":"10.1007/s00726-025-03454-5","DOIUrl":null,"url":null,"abstract":"<div><p>Therapeutic peptides, as a unique form of medication composed of orderly arranged sequences of amino acids, are valued for their high affinity, specificity, low immunogenicity, and economical production costs. Currently, more than 100 peptides have already secured market approval. Over 150 are actively undergoing clinical trials, while an additional 400–600 are in the preclinical research stage. Despite this, their clinical application is limited by factors such as salt sensitivity, brief residence in the bloodstream, inadequate cellular uptake, and high structural flexibility. By employing suitable chemical methods to modify peptides, it is possible to regulate important physicochemical factors such as charge, hydrophobicity, conformation, amphiphilicity, and sequence that affect the physicochemical properties and biological activity of peptides. This can overcome the inherent deficiencies of peptides, enhance their pharmacokinetic properties and biological activity, and promote continuous progress in the field of research. A diverse array of modified peptides is currently being developed and investigated across numerous therapeutic fields. Drawing on the latest research, this review encapsulates the essential physicochemical factors and significant chemical modification strategies that influence the properties and biological activity of peptides as pharmaceuticals. It also assesses how physicochemical factors affect the application of peptide drugs in disease treatment and the effectiveness of chemical strategies in disease therapy. Concurrently, this review discusses the prospective advancements in therapeutic peptide development, with the goal of offering guidance for designing and optimizing therapeutic peptides and to delve deeper into the therapeutic potential of peptides for disease intervention.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-025-03454-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-025-03454-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic peptides, as a unique form of medication composed of orderly arranged sequences of amino acids, are valued for their high affinity, specificity, low immunogenicity, and economical production costs. Currently, more than 100 peptides have already secured market approval. Over 150 are actively undergoing clinical trials, while an additional 400–600 are in the preclinical research stage. Despite this, their clinical application is limited by factors such as salt sensitivity, brief residence in the bloodstream, inadequate cellular uptake, and high structural flexibility. By employing suitable chemical methods to modify peptides, it is possible to regulate important physicochemical factors such as charge, hydrophobicity, conformation, amphiphilicity, and sequence that affect the physicochemical properties and biological activity of peptides. This can overcome the inherent deficiencies of peptides, enhance their pharmacokinetic properties and biological activity, and promote continuous progress in the field of research. A diverse array of modified peptides is currently being developed and investigated across numerous therapeutic fields. Drawing on the latest research, this review encapsulates the essential physicochemical factors and significant chemical modification strategies that influence the properties and biological activity of peptides as pharmaceuticals. It also assesses how physicochemical factors affect the application of peptide drugs in disease treatment and the effectiveness of chemical strategies in disease therapy. Concurrently, this review discusses the prospective advancements in therapeutic peptide development, with the goal of offering guidance for designing and optimizing therapeutic peptides and to delve deeper into the therapeutic potential of peptides for disease intervention.

治疗性多肽:化学策略强化多肽以增强疾病治疗效果
治疗肽是由氨基酸序列有序排列而成的一种独特的药物形式,具有高亲和力、特异性、低免疫原性和经济的生产成本等优点。目前,已有100多种多肽获得了市场批准。超过150种正在积极进行临床试验,另有400-600种处于临床前研究阶段。尽管如此,它们的临床应用受到盐敏感性、在血液中停留时间短、细胞摄取不足和高度结构灵活性等因素的限制。通过采用合适的化学方法对多肽进行修饰,可以调节影响多肽理化性质和生物活性的重要理化因素,如电荷、疏水性、构象、两亲性和序列等。这可以克服多肽固有的缺陷,增强其药代动力学性质和生物活性,促进研究领域的不断进步。目前,许多治疗领域正在开发和研究各种修饰肽。本文综述了影响多肽作为药物的性质和生物活性的主要理化因素和重要的化学修饰策略。它还评估了物理化学因素如何影响多肽药物在疾病治疗中的应用以及化学策略在疾病治疗中的有效性。同时,本文综述了治疗性多肽的发展前景,旨在为治疗性多肽的设计和优化提供指导,并进一步挖掘多肽在疾病干预中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信