Woubishet Zewdu Taffese, Benoît Hilloulin, Yury Villagran Zaccardi, Afshin Marani, Moncef L. Nehdi, Muhammad Usman Hanif, Muralidhar Kamath, Sandra Nunes, Stefanie von Greve-Dierfeld, Antonios Kanellopoulos
{"title":"Machine learning in concrete durability: challenges and pathways identified by RILEM TC 315-DCS towards enhanced predictive models","authors":"Woubishet Zewdu Taffese, Benoît Hilloulin, Yury Villagran Zaccardi, Afshin Marani, Moncef L. Nehdi, Muhammad Usman Hanif, Muralidhar Kamath, Sandra Nunes, Stefanie von Greve-Dierfeld, Antonios Kanellopoulos","doi":"10.1617/s11527-025-02664-3","DOIUrl":null,"url":null,"abstract":"<div><p>This review provides an in-depth examination of machine learning applications in assessing concrete durability from 2013 to 2024, with a particular focus on critical degradation mechanisms, including carbonation, chloride-induced deterioration, sulfate attack, frost damage, shrinkage, and corrosion. It underscores the field’s heavy reliance on laboratory-based data and notes the limited use of field data and the scarcity of newly generated datasets. The review reveals that most studies utilize existing literature-based datasets, with few contributing novel data and limited open access to these databases, which hampers broader validation and application. The review classifies the features analyzed in studies into categories such as mixture proportions, engineering properties, exposure conditions, test parameters, and chemical compositions, highlighting a growing emphasis on chemical compositions. Modeling approaches are predominantly standalone, though ensemble and hybrid models are increasingly prevalent, with ensemble models showing particularly strong performance in recent years. High accuracy is observed across studies, with ensemble models, neural networks, and hybrid models leading in performance. Furthermore, the review stresses the growing importance of model explainability, noting that model-agnostic methods like SHAP are frequently used and that the focus on explainability has increased. To propel the field forward, the review advocates for the development of diverse new datasets that include both the chemical and physical properties of various mix ingredients and improved data-sharing practices. It recommends adopting a multi-task learning approach to simultaneously address multiple deterioration mechanisms, which can yield deeper insights and support the creation of more durable concrete structures.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02664-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02664-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review provides an in-depth examination of machine learning applications in assessing concrete durability from 2013 to 2024, with a particular focus on critical degradation mechanisms, including carbonation, chloride-induced deterioration, sulfate attack, frost damage, shrinkage, and corrosion. It underscores the field’s heavy reliance on laboratory-based data and notes the limited use of field data and the scarcity of newly generated datasets. The review reveals that most studies utilize existing literature-based datasets, with few contributing novel data and limited open access to these databases, which hampers broader validation and application. The review classifies the features analyzed in studies into categories such as mixture proportions, engineering properties, exposure conditions, test parameters, and chemical compositions, highlighting a growing emphasis on chemical compositions. Modeling approaches are predominantly standalone, though ensemble and hybrid models are increasingly prevalent, with ensemble models showing particularly strong performance in recent years. High accuracy is observed across studies, with ensemble models, neural networks, and hybrid models leading in performance. Furthermore, the review stresses the growing importance of model explainability, noting that model-agnostic methods like SHAP are frequently used and that the focus on explainability has increased. To propel the field forward, the review advocates for the development of diverse new datasets that include both the chemical and physical properties of various mix ingredients and improved data-sharing practices. It recommends adopting a multi-task learning approach to simultaneously address multiple deterioration mechanisms, which can yield deeper insights and support the creation of more durable concrete structures.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.