Jie Liu, Qiu Ye, Yi Wu, Junliang Chen, Yongjie Ge, Linjie Zhang, Reza Abazari, Jinjie Qian
{"title":"Short-range electronic engineering by coupling Fe phthalocyanines with MOF-derived N,S-doped carbon nanorods for oxygen reduction","authors":"Jie Liu, Qiu Ye, Yi Wu, Junliang Chen, Yongjie Ge, Linjie Zhang, Reza Abazari, Jinjie Qian","doi":"10.1007/s11426-024-2349-x","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular catalysts like metal phthalocyanines (MPc) hold significant promise for diverse applications in renewable energy conversion and storage. Despite their inherent catalytic activity in the oxygen reduction reaction (ORR), enhancing their practical applicability necessitates addressing challenges in electrical conductivity and catalytic stability through effective control of electron distribution within the substrate. In this work, we have successfully synthesized an electrocatalyst featuring FePc molecules anchored onto N,S co-doped carbon nanorods from a pillar-layer metal-organic framework (MOF), designated as ZTB-NSCR-FePc. This MOF-derived heteroatom-doped carbon substrate could be easily obtained by direct pyrolysis of a pre-fabricated rod-like Zn-TDC-bpy. The optimized ZTB-NSCR-FePc demonstrated exceptional electrocatalytic efficiency and stability towards ORR with a positive half-wave potential of 0.890 V. When employed in a Zn-air battery, it outperformed the benchmark Pt/C air cathode, achieving a peak power density of 198.9 mW cm<sup>−2</sup>. Finally, theoretical calculations revealed that short-range electron interactions between N/S atoms and the graphene substrate significantly enhance the anchoring effect of FePc, improve the adsorption of reaction intermediates, and thereby boost the ORR performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 5","pages":"1859 - 1868"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2349-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular catalysts like metal phthalocyanines (MPc) hold significant promise for diverse applications in renewable energy conversion and storage. Despite their inherent catalytic activity in the oxygen reduction reaction (ORR), enhancing their practical applicability necessitates addressing challenges in electrical conductivity and catalytic stability through effective control of electron distribution within the substrate. In this work, we have successfully synthesized an electrocatalyst featuring FePc molecules anchored onto N,S co-doped carbon nanorods from a pillar-layer metal-organic framework (MOF), designated as ZTB-NSCR-FePc. This MOF-derived heteroatom-doped carbon substrate could be easily obtained by direct pyrolysis of a pre-fabricated rod-like Zn-TDC-bpy. The optimized ZTB-NSCR-FePc demonstrated exceptional electrocatalytic efficiency and stability towards ORR with a positive half-wave potential of 0.890 V. When employed in a Zn-air battery, it outperformed the benchmark Pt/C air cathode, achieving a peak power density of 198.9 mW cm−2. Finally, theoretical calculations revealed that short-range electron interactions between N/S atoms and the graphene substrate significantly enhance the anchoring effect of FePc, improve the adsorption of reaction intermediates, and thereby boost the ORR performance.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.