Emergent collective behavior of cohesive, aligning particles

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Jeanine Shea, Holger Stark
{"title":"Emergent collective behavior of cohesive, aligning particles","authors":"Jeanine Shea,&nbsp;Holger Stark","doi":"10.1140/epje/s10189-025-00482-7","DOIUrl":null,"url":null,"abstract":"<p>Collective behavior is all around us, from flocks of birds to schools of fish. These systems are immensely complex, which makes it pertinent to study their behavior through minimal models. We introduce such a minimal model for cohesive and aligning self-propelled particles in which group cohesion is established through additive, non-reciprocal torques. These torques cause a particle’s orientation vector to turn toward its neighbor so that it aligns with the separation vector. We additionally incorporate an alignment torque, which competes with the cohesive torque in the same spatial range. By changing the strength and range of these torque interactions, we uncover six states which we distinguish via their static and dynamic properties: a disperse state, a multiple worm state, a line state, a persistent worm state, a rotary worm state, and an aster state. Their occurrence strongly depends on initial conditions and stochasticity, so the model exhibits multistabilities. A number of the states exhibit collective dynamics which are reminiscent of those seen in nature.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 4-5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00482-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00482-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Collective behavior is all around us, from flocks of birds to schools of fish. These systems are immensely complex, which makes it pertinent to study their behavior through minimal models. We introduce such a minimal model for cohesive and aligning self-propelled particles in which group cohesion is established through additive, non-reciprocal torques. These torques cause a particle’s orientation vector to turn toward its neighbor so that it aligns with the separation vector. We additionally incorporate an alignment torque, which competes with the cohesive torque in the same spatial range. By changing the strength and range of these torque interactions, we uncover six states which we distinguish via their static and dynamic properties: a disperse state, a multiple worm state, a line state, a persistent worm state, a rotary worm state, and an aster state. Their occurrence strongly depends on initial conditions and stochasticity, so the model exhibits multistabilities. A number of the states exhibit collective dynamics which are reminiscent of those seen in nature.

内聚、排列粒子的涌现集体行为
集体行为在我们身边随处可见,从鸟群到鱼群。这些系统非常复杂,这使得通过最小模型研究它们的行为变得非常重要。我们介绍了这样一个最小的模型内聚和对准自推进粒子,其中群体内聚是通过加性,非互反扭矩建立的。这些力矩使一个粒子的方向矢量转向它的邻居,使它与分离矢量对齐。我们还加入了一个对准扭矩,它在相同的空间范围内与内聚扭矩竞争。通过改变这些扭矩相互作用的强度和范围,我们发现了六种状态,我们通过它们的静态和动态特性来区分:分散状态、多蜗杆状态、直线状态、持久蜗杆状态、旋转蜗杆状态和aster状态。它们的出现强烈地依赖于初始条件和随机性,因此模型具有多稳定性。许多状态表现出集体动力,这让人想起自然界中看到的那些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信