{"title":"Wideband High-Gain Quad-Polarization Reconfigurable Antenna Using Three-Layered Polarizer","authors":"Zhengrong Lu;Yujian Li;Junhong Wang","doi":"10.1109/LAWP.2025.3529684","DOIUrl":null,"url":null,"abstract":"Quad-polarization reconfigurable antenna consists of a three-layered polarizer, and an 8 × 8 source antenna is investigated in the Ka band. By changing the orientation of each layer, the antenna can radiate horizontally polarized, vertically polarized, left-hand and right-hand circularly polarized electromagnetic waves. The 8 × 8 horn array is employed as the source antenna, enhancing the antenna gain and expanding the operating bandwidth. The polarizer and the source antenna are fabricated by 3-D printing technology using photopolymer and aluminum alloy. Excellent operating performance, including impedance bandwidth of 51.1%, gain of up to 24.8 dBi, dual circular polarization overlap bandwidth of 41.3%, and quad-polarization overlap bandwidth of 24.6%, is obtained experimentally by the fabricated prototype. The proposed antenna with promising performance is valuable to emerging millimeter-wave applications.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 5","pages":"1198-1202"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841946/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quad-polarization reconfigurable antenna consists of a three-layered polarizer, and an 8 × 8 source antenna is investigated in the Ka band. By changing the orientation of each layer, the antenna can radiate horizontally polarized, vertically polarized, left-hand and right-hand circularly polarized electromagnetic waves. The 8 × 8 horn array is employed as the source antenna, enhancing the antenna gain and expanding the operating bandwidth. The polarizer and the source antenna are fabricated by 3-D printing technology using photopolymer and aluminum alloy. Excellent operating performance, including impedance bandwidth of 51.1%, gain of up to 24.8 dBi, dual circular polarization overlap bandwidth of 41.3%, and quad-polarization overlap bandwidth of 24.6%, is obtained experimentally by the fabricated prototype. The proposed antenna with promising performance is valuable to emerging millimeter-wave applications.
期刊介绍:
IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.