{"title":"Maximizing Spectrum Efficiency of Data-Carrying Reference Signals via Bayesian Optimization","authors":"Taiki Kato;Hiroki Iimori;Chandan Pradhan;Szabolcs Malomsoky;Naoki Ishikawa","doi":"10.1109/OJCOMS.2025.3562774","DOIUrl":null,"url":null,"abstract":"Data-carrying reference signals are a type of reference signal (RS) constructed on the Grassmann manifold, which allows for simultaneous data transmission and channel estimation to achieve boosted spectral efficiency at high signal-to-noise ratios (SNRs). However, they do not improve spectral efficiency at low to middle SNRs compared with conventional RSs. To address this problem, we propose a numerical optimization-based Grassmann constellation design on the Grassmann manifold that accounts for both data transmission and channel estimation. In our numerical optimization, we derive an upper bound on the normalized mean squared error (NMSE) of estimated channel matrices and a lower bound on the noncoherent average mutual information (AMI), and these bounds are optimized simultaneously by using a Bayesian optimization technique. The proposed objective function outperforms conventional design metrics in obtaining Pareto-optimal constellations for NMSE and AMI. The constellation obtained by our method achieves an NMSE comparable to conventional non-data-carrying RSs while enabling data transmission, resulting in superior AMI performance and improved spectral efficiency even at middle SNRs.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3892-3903"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976534","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976534/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Data-carrying reference signals are a type of reference signal (RS) constructed on the Grassmann manifold, which allows for simultaneous data transmission and channel estimation to achieve boosted spectral efficiency at high signal-to-noise ratios (SNRs). However, they do not improve spectral efficiency at low to middle SNRs compared with conventional RSs. To address this problem, we propose a numerical optimization-based Grassmann constellation design on the Grassmann manifold that accounts for both data transmission and channel estimation. In our numerical optimization, we derive an upper bound on the normalized mean squared error (NMSE) of estimated channel matrices and a lower bound on the noncoherent average mutual information (AMI), and these bounds are optimized simultaneously by using a Bayesian optimization technique. The proposed objective function outperforms conventional design metrics in obtaining Pareto-optimal constellations for NMSE and AMI. The constellation obtained by our method achieves an NMSE comparable to conventional non-data-carrying RSs while enabling data transmission, resulting in superior AMI performance and improved spectral efficiency even at middle SNRs.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.