Ultra-Short Horn Antennas via Digital Choke and Groove Aperture Topologies

IF 3.7 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Galestan Mackertich-Sengerdy;Sawyer D. Campbell;Douglas H. Werner
{"title":"Ultra-Short Horn Antennas via Digital Choke and Groove Aperture Topologies","authors":"Galestan Mackertich-Sengerdy;Sawyer D. Campbell;Douglas H. Werner","doi":"10.1109/LAWP.2025.3530859","DOIUrl":null,"url":null,"abstract":"The pursuit of compact antennas has historically sacrificed directivity. Traditionally, solutions involve adding radiators, complex lenses or enlarging the antenna, which often introduces spurious lobes or increases system height. This study investigates a digital choke and groove aperture technology, employing recessed slots and protruded chokes, to optimize directivity and shape lobes in ultra-short horns. Through analysis and experiments, we assess the antenna's gain, volume efficiency, bandwidth, and lobe suppression. Our findings offer insights into applications and lay the groundwork for further advancements in ultra-low-profile digital aperture topologies for ultra-short horns.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 5","pages":"1213-1217"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843826/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of compact antennas has historically sacrificed directivity. Traditionally, solutions involve adding radiators, complex lenses or enlarging the antenna, which often introduces spurious lobes or increases system height. This study investigates a digital choke and groove aperture technology, employing recessed slots and protruded chokes, to optimize directivity and shape lobes in ultra-short horns. Through analysis and experiments, we assess the antenna's gain, volume efficiency, bandwidth, and lobe suppression. Our findings offer insights into applications and lay the groundwork for further advancements in ultra-low-profile digital aperture topologies for ultra-short horns.
基于数字扼流圈和沟槽孔径拓扑的超短喇叭天线
对紧凑型天线的追求在历史上牺牲了指向性。传统上,解决方案包括增加散热器、复杂透镜或扩大天线,这通常会引入假瓣或增加系统高度。本研究研究了一种数字扼流圈和沟槽孔径技术,采用凹槽和突出扼流圈来优化超短角的指向性和形状。通过分析和实验,我们评估了天线的增益、体积效率、带宽和瓣抑制。我们的研究结果为应用提供了见解,并为超短角的超低轮廓数字孔径拓扑的进一步发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
9.50%
发文量
529
审稿时长
1.0 months
期刊介绍: IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信