Mohamed J. Saadh , Omer Qutaiba B. Allela , Radhwan Abdul Kareem , Ashishkumar Kyada , H. Malathi , Deepak Nathiya , Deepak Bhanot , Hayder Naji Sameer , Atheer Khdyair Hamad , Zainab H. Athab , Mohaned Adil
{"title":"Immune cell dysfunction: A critical player in development of diabetes complications","authors":"Mohamed J. Saadh , Omer Qutaiba B. Allela , Radhwan Abdul Kareem , Ashishkumar Kyada , H. Malathi , Deepak Nathiya , Deepak Bhanot , Hayder Naji Sameer , Atheer Khdyair Hamad , Zainab H. Athab , Mohaned Adil","doi":"10.1016/j.retram.2025.103510","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus, a global health challenge, influences millions worldwide by leading to severe complications and premature death. A key factor in its pathogenesis is immune cell dysfunction, which aggravates both type 1 and type 2 diabetes. The important role that immune cell dysregulation plays in the emergence of diabetes complications is investigated in this research. It highlights the manner in which diabetes compromises the immune system's adaptive as well as innate responses. Key defects in innate immunity include impaired pathogen recognition, and dysfunctional behavior of macrophages, neutrophils, and natural killer (NK) cells. Additionally, the complement system is dysregulated, and cytokine production is altered, affecting overall immune signaling. The study investigates the dysfunction of several T and B cell subsets, such as CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells, in relation to adaptive immunity. These dysfunctions collectively contribute to chronic inflammation, reduced pathogen clearance, and increased susceptibility to infections, ultimately exacerbating diabetes complications. Developing targeted therapies to reduce diabetes complications and enhance patient outcomes requires an understanding of these mechanisms.</div></div>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":"73 3","pages":"Article 103510"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452318625000194","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus, a global health challenge, influences millions worldwide by leading to severe complications and premature death. A key factor in its pathogenesis is immune cell dysfunction, which aggravates both type 1 and type 2 diabetes. The important role that immune cell dysregulation plays in the emergence of diabetes complications is investigated in this research. It highlights the manner in which diabetes compromises the immune system's adaptive as well as innate responses. Key defects in innate immunity include impaired pathogen recognition, and dysfunctional behavior of macrophages, neutrophils, and natural killer (NK) cells. Additionally, the complement system is dysregulated, and cytokine production is altered, affecting overall immune signaling. The study investigates the dysfunction of several T and B cell subsets, such as CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells, in relation to adaptive immunity. These dysfunctions collectively contribute to chronic inflammation, reduced pathogen clearance, and increased susceptibility to infections, ultimately exacerbating diabetes complications. Developing targeted therapies to reduce diabetes complications and enhance patient outcomes requires an understanding of these mechanisms.
期刊介绍:
Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9).
Core areas covered in Current Research in Translational Medicine are:
Hematology,
Immunology,
Infectiology,
Hematopoietic,
Cell Transplantation,
Cellular and Gene Therapy.