{"title":"Comparing the influence of social risk factors on machine learning model performance across racial and ethnic groups in home healthcare","authors":"Mollie Hobensack PhD, RN , Anahita Davoudi PhD , Jiyoun Song PhD, APRN , Kenrick Cato PhD, RN , Kathryn H. Bowles PhD, RN , Maxim Topaz PhD, RN","doi":"10.1016/j.outlook.2025.102431","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined the impact of social risk factors on machine learning model performance for predicting hospitalization and emergency department visits in home healthcare. Using retrospective data from one U.S. home healthcare agency, four models were developed with unstructured social information documented in clinical notes. Performance was compared with and without social factors. A subgroup analyses was conducted by race and ethnicity to assess for fairness. LightGBM performed best overall. Social factors had a modest effect, but findings highlight the feasibility of integrating unstructured social information into machine learning models and the importance of fairness evaluation in home healthcare.</div></div>","PeriodicalId":54705,"journal":{"name":"Nursing Outlook","volume":"73 3","pages":"Article 102431"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nursing Outlook","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029655425000843","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined the impact of social risk factors on machine learning model performance for predicting hospitalization and emergency department visits in home healthcare. Using retrospective data from one U.S. home healthcare agency, four models were developed with unstructured social information documented in clinical notes. Performance was compared with and without social factors. A subgroup analyses was conducted by race and ethnicity to assess for fairness. LightGBM performed best overall. Social factors had a modest effect, but findings highlight the feasibility of integrating unstructured social information into machine learning models and the importance of fairness evaluation in home healthcare.
期刊介绍:
Nursing Outlook, a bimonthly journal, provides innovative ideas for nursing leaders through peer-reviewed articles and timely reports. Each issue examines current issues and trends in nursing practice, education, and research, offering progressive solutions to the challenges facing the profession. Nursing Outlook is the official journal of the American Academy of Nursing and the Council for the Advancement of Nursing Science and supports their mission to serve the public and the nursing profession by advancing health policy and practice through the generation, synthesis, and dissemination of nursing knowledge. The journal is included in MEDLINE, CINAHL and the Journal Citation Reports published by Clarivate Analytics.