Effect of Mn doping on the synthesis and properties of nearly spherical Sm2Fe17N3 powders

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pengfei Yue , Jingwu Zheng , Shuqi Zong , Wei Cai , Haibo Chen , Liang Qiao , Min Lin , Yao Ying , Jing Yu , Juan Li , Wangchang Li , Shenglei Che
{"title":"Effect of Mn doping on the synthesis and properties of nearly spherical Sm2Fe17N3 powders","authors":"Pengfei Yue ,&nbsp;Jingwu Zheng ,&nbsp;Shuqi Zong ,&nbsp;Wei Cai ,&nbsp;Haibo Chen ,&nbsp;Liang Qiao ,&nbsp;Min Lin ,&nbsp;Yao Ying ,&nbsp;Jing Yu ,&nbsp;Juan Li ,&nbsp;Wangchang Li ,&nbsp;Shenglei Che","doi":"10.1016/j.materresbull.2025.113530","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve smaller particle sizes of Sm₂Fe₁₇N₃ magnetic powders, crushing is often applied to the obtained powders. However, this process introduces more angular edges and increases the risk of oxidation. In this study, nearly spherical Sm₂(Fe,Mn)₁₇N₃ magnetic powders with controllable particle sizes and strong oxidation resistance were prepared eliminating the need for crushing, using a combined ultrasonic spray pyrolysis-reduction diffusion method. The results show that appropriate Mn doping facilitates particle size refinement. Mn doping of Fe increased lattice expansion without altering crystal structure. The optimal coercivity occurred at a 5 at.% Mn doping. Furthermore, as the Mn doping level increased, the proportion of adsorbed oxygen decreased, slowing the occurrence of further oxidation reactions and impeding the transformation of metallic elements into higher-valence oxides, thereby enhancing oxidation resistance. The addition of Mn improved the thermal stability and magnetic properties of Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub> magnets, offering a promising method for producing high-performance permanent magnets.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113530"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002387","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve smaller particle sizes of Sm₂Fe₁₇N₃ magnetic powders, crushing is often applied to the obtained powders. However, this process introduces more angular edges and increases the risk of oxidation. In this study, nearly spherical Sm₂(Fe,Mn)₁₇N₃ magnetic powders with controllable particle sizes and strong oxidation resistance were prepared eliminating the need for crushing, using a combined ultrasonic spray pyrolysis-reduction diffusion method. The results show that appropriate Mn doping facilitates particle size refinement. Mn doping of Fe increased lattice expansion without altering crystal structure. The optimal coercivity occurred at a 5 at.% Mn doping. Furthermore, as the Mn doping level increased, the proportion of adsorbed oxygen decreased, slowing the occurrence of further oxidation reactions and impeding the transformation of metallic elements into higher-valence oxides, thereby enhancing oxidation resistance. The addition of Mn improved the thermal stability and magnetic properties of Sm2Fe17N3 magnets, offering a promising method for producing high-performance permanent magnets.

Abstract Image

Mn掺杂对近球形Sm2Fe17N3粉末合成及性能的影响
为了使Sm₂Fe₁₇N₃磁粉的粒度更小,通常对得到的粉末进行粉碎。然而,这个过程引入了更多的棱角,增加了氧化的风险。本研究采用超声波喷雾热解-还原扩散相结合的方法,制备了粒径可控、抗氧化性强的近球形Sm₂(Fe,Mn)₁₇N₃磁粉,消除了粉碎的需要。结果表明,适当的Mn掺杂有利于晶粒细化。Mn掺杂Fe增加了晶格膨胀,但没有改变晶体结构。最佳矫顽力出现在5at。% Mn掺杂。此外,随着Mn掺杂水平的增加,吸附氧的比例降低,进一步氧化反应的发生减慢,阻碍了金属元素向高价价氧化物的转变,从而增强了抗氧化性。Mn的加入改善了Sm2Fe17N3磁体的热稳定性和磁性能,为制备高性能永磁体提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信